結果
問題 |
No.3082 Make Palindromic Multiple(Judge)
|
ユーザー |
|
提出日時 | 2025-04-01 10:25:52 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,594 ms / 3,500 ms |
コード長 | 25,523 bytes |
コンパイル時間 | 3,074 ms |
コンパイル使用メモリ | 235,472 KB |
実行使用メモリ | 11,040 KB |
最終ジャッジ日時 | 2025-04-16 13:14:18 |
合計ジャッジ時間 | 15,204 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 73 |
ソースコード
#include <stack> #include <string> #include <vector> #include <istream> #include <type_traits> #include <random> #include <chrono> #include <iostream> #include <unordered_set> #include <set> #include <numeric> #include <iomanip> #include <ostream> #include <array> #include <deque> #include <bitset> #include <iterator> #include <algorithm> #include <map> #include <queue> #include <cassert> #include <utility> #include <functional> #include <optional> #include <fstream> #include <unordered_map> #ifndef KK2_TEMPLATE_PROCON_HPP #define KK2_TEMPLATE_PROCON_HPP 1 #ifndef KK2_TEMPLATE_CONSTANT_HPP #define KK2_TEMPLATE_CONSTANT_HPP 1 #ifndef KK2_TEMPLATE_TYPE_ALIAS_HPP #define KK2_TEMPLATE_TYPE_ALIAS_HPP 1 using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using pi = std::pair<int, int>; using pl = std::pair<i64, i64>; using pil = std::pair<int, i64>; using pli = std::pair<i64, int>; template <class T> using vc = std::vector<T>; template <class T> using vvc = std::vector<vc<T>>; template <class T> using vvvc = std::vector<vvc<T>>; template <class T> using vvvvc = std::vector<vvvc<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqi = std::priority_queue<T, std::vector<T>, std::greater<T>>; #endif // KK2_TEMPLATE_TYPE_ALIAS_HPP template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = (1 << 30) - 123; template <> constexpr i64 infty<i64> = (1ll << 62) - (1ll << 31); template <> constexpr i128 infty<i128> = (i128(1) << 126) - (i128(1) << 63); template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<i64>; template <> constexpr u128 infty<u128> = infty<i128>; template <> constexpr double infty<double> = infty<i64>; template <> constexpr long double infty<long double> = infty<i64>; constexpr int mod = 998244353; constexpr int modu = 1e9 + 7; constexpr long double PI = 3.14159265358979323846; #endif // KK2_TEMPLATE_CONSTANT_HPP #ifndef KK2_TEMPLATE_FUNCTION_UTIL_HPP #define KK2_TEMPLATE_FUNCTION_UTIL_HPP 1 namespace kk2 { template <class T, class... Sizes> auto make_vector(int first, Sizes... sizes) { if constexpr (sizeof...(sizes) == 0) { return std::vector<T>(first); } else { return std::vector<decltype(make_vector<T>(sizes...))>(first, make_vector<T>(sizes...)); } } template <class T, class U> void fill_all(std::vector<T> &v, const U &x) { std::fill(std::begin(v), std::end(v), T(x)); } template <class T, class U> void fill_all(std::vector<std::vector<T>> &v, const U &x) { for (auto &u : v) fill_all(u, x); } template <class C> int mysize(const C &c) { return c.size(); } // T: comutative monoid template <class T, class U> U all_sum(const std::vector<T> &v, U init, U = U()) { U res = init; for (const auto &x : v) res += x; return res; } template <class T, class U> U all_sum(const std::vector<std::vector<T>> &v, U init, U unit = U()) { U res = init; for (const auto &u : v) res += all_sum(u, unit, unit); return res; } // T: commutative monoid, F: (U, T) -> U template <class T, class U, class F> U all_prod(const std::vector<T> &v, U init, const F &f, U = U()) { U res = init; for (const auto &x : v) res = f(res, x); return res; } template <class T, class U, class F> U all_prod(const std::vector<std::vector<T>> &v, U init, const F &f, U unit) { U res = init; for (const auto &u : v) res = f(res, all_prod(u, unit, f, unit)); return res; } template <class T> T all_min(const std::vector<T> &v) { if (v.empty()) return T(); T res = v[0]; for (const auto &x : v) res = res > x ? x : res; return res; } template <class T> T all_min(const std::vector<std::vector<T>> &v) { T res{}; bool first = true; for (const auto &u : v) { if (u.empty()) continue; if (first) { res = all_min(u); first = false; } else { T tmp = all_min(u); res = res > tmp ? tmp : res; } } return res; } template <class T> T all_max(const std::vector<T> &v) { if (v.empty()) return T(); T res = v[0]; for (const auto &x : v) res = res < x ? x : res; return res; } template <class T> T all_max(const std::vector<std::vector<T>> &v) { T res{}; bool first = true; for (const auto &u : v) { if (u.empty()) continue; if (first) { res = all_max(u); first = false; } else { T tmp = all_max(u); res = res < tmp ? tmp : res; } } return res; } } // namespace kk2 #endif // KK2_TEMPLATE_FUNCTION_UTIL_HPP #ifndef KK2_TEMPLATE_IO_UTIL_HPP #define KK2_TEMPLATE_IO_UTIL_HPP 1 #ifndef KK2_TYPE_TRAITS_TYPE_TRAITS_HPP #define KK2_TYPE_TRAITS_TYPE_TRAITS_HPP 1 namespace kk2 { #ifndef _MSC_VER template <typename T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value or std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value or std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_integral = typename std::conditional<std::is_integral<T>::value or is_signed_int128<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_signed = typename std::conditional<std::is_signed<T>::value or is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned = typename std::conditional<std::is_unsigned<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <typename T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <typename T> using is_integral = std::enable_if_t<std::is_integral<T>::value>; template <typename T> using is_signed = std::enable_if_t<std::is_signed<T>::value>; template <typename T> using is_unsigned = std::enable_if_t<std::is_unsigned<T>::value>; template <typename T> using to_unsigned = std::make_unsigned<T>; #endif // _MSC_VER template <typename T> using is_integral_t = std::enable_if_t<is_integral<T>::value>; template <typename T> using is_signed_t = std::enable_if_t<is_signed<T>::value>; template <typename T> using is_unsigned_t = std::enable_if_t<is_unsigned<T>::value>; template <typename T> using is_function_pointer = typename std::conditional<std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>, std::true_type, std::false_type>::type; template <typename T, std::enable_if_t<is_function_pointer<T>::value> * = nullptr> struct is_two_args_function_pointer : std::false_type {}; template <typename R, typename T1, typename T2> struct is_two_args_function_pointer<R (*)(T1, T2)> : std::true_type {}; template <typename T> using is_two_args_function_pointer_t = std::enable_if_t<is_two_args_function_pointer<T>::value>; namespace type_traits { struct istream_tag {}; struct ostream_tag {}; } // namespace type_traits template <typename T> using is_standard_istream = typename std::conditional<std::is_same<T, std::istream>::value || std::is_same<T, std::ifstream>::value, std::true_type, std::false_type>::type; template <typename T> using is_standard_ostream = typename std::conditional<std::is_same<T, std::ostream>::value || std::is_same<T, std::ofstream>::value, std::true_type, std::false_type>::type; template <typename T> using is_user_defined_istream = std::is_base_of<type_traits::istream_tag, T>; template <typename T> using is_user_defined_ostream = std::is_base_of<type_traits::ostream_tag, T>; template <typename T> using is_istream = typename std::conditional<is_standard_istream<T>::value || is_user_defined_istream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_ostream = typename std::conditional<is_standard_ostream<T>::value || is_user_defined_ostream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_istream_t = std::enable_if_t<is_istream<T>::value>; template <typename T> using is_ostream_t = std::enable_if_t<is_ostream<T>::value>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_TYPE_TRAITS_HPP // なんかoj verifyはプロトタイプ宣言が落ちる namespace impl { struct read { template <class IStream, class T> inline static void all_read(IStream &is, T &x) { is >> x; } template <class IStream, class T, class U> inline static void all_read(IStream &is, std::pair<T, U> &p) { all_read(is, p.first); all_read(is, p.second); } template <class IStream, class T> inline static void all_read(IStream &is, std::vector<T> &v) { for (T &x : v) all_read(is, x); } template <class IStream, class T, size_t F> inline static void all_read(IStream &is, std::array<T, F> &a) { for (T &x : a) all_read(is, x); } }; struct write { template <class OStream, class T> inline static void all_write(OStream &os, const T &x) { os << x; } template <class OStream, class T, class U> inline static void all_write(OStream &os, const std::pair<T, U> &p) { all_write(os, p.first); all_write(os, ' '); all_write(os, p.second); } template <class OStream, class T> inline static void all_write(OStream &os, const std::vector<T> &v) { for (int i = 0; i < (int)v.size(); ++i) { if (i) all_write(os, ' '); all_write(os, v[i]); } } template <class OStream, class T, size_t F> inline static void all_write(OStream &os, const std::array<T, F> &a) { for (int i = 0; i < (int)F; ++i) { if (i) all_write(os, ' '); all_write(os, a[i]); } } }; } // namespace impl template <class IStream, class T, class U, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::pair<T, U> &p) { impl::read::all_read(is, p); return is; } template <class IStream, class T, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::vector<T> &v) { impl::read::all_read(is, v); return is; } template <class IStream, class T, size_t F, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::array<T, F> &a) { impl::read::all_read(is, a); return is; } template <class OStream, class T, class U, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::pair<T, U> &p) { impl::write::all_write(os, p); return os; } template <class OStream, class T, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::vector<T> &v) { impl::write::all_write(os, v); return os; } template <class OStream, class T, size_t F, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::array<T, F> &a) { impl::write::all_write(os, a); return os; } #endif // KK2_TEMPLATE_IO_UTIL_HPP #ifndef KK2_TEMPLATE_MACROS_HPP #define KK2_TEMPLATE_MACROS_HPP 1 #define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_) #define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i) #define rep3(i, a, b) for (long long i = (a); i < (long long)(b); ++i) #define repi2(i, a) for (long long i = (a) - 1; i >= 0; --i) #define repi3(i, a, b) for (long long i = (a) - 1; i >= (long long)(b); --i) #define overload3(a, b, c, d, ...) d #define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__) #define fi first #define se second #define all(p) p.begin(), p.end() #endif // KK2_TEMPLATE_MACROS_HPP struct FastIOSetUp { FastIOSetUp() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } fast_io_set_up; auto &kin = std::cin; auto &kout = std::cout; auto (*kendl)(std::ostream &) = std::endl<char, std::char_traits<char>>; void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); } void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); } void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); } void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); } void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); } void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } std::istream &operator>>(std::istream &is, u128 &x) { std::string s; is >> s; x = 0; for (char c : s) { assert('0' <= c && c <= '9'); x = x * 10 + c - '0'; } return is; } std::istream &operator>>(std::istream &is, i128 &x) { std::string s; is >> s; bool neg = s[0] == '-'; x = 0; for (int i = neg; i < (int)s.size(); i++) { assert('0' <= s[i] && s[i] <= '9'); x = x * 10 + s[i] - '0'; } if (neg) x = -x; return is; } std::ostream &operator<<(std::ostream &os, u128 x) { if (x == 0) return os << '0'; std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } std::ostream &operator<<(std::ostream &os, i128 x) { if (x == 0) return os << '0'; if (x < 0) { os << '-'; x = -x; } std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } #endif // KK2_TEMPLATE_PROCON_HPP // #include <kk2/template/debug.hpp> #ifndef KK2_MODINT_MONT_ARB_HPP #define KK2_MODINT_MONT_ARB_HPP 1 namespace kk2 { template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void setmod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt _v; ArbitraryLazyMontgomeryModIntBase() : _v(0) {} template <class T, is_integral_t<T> * = nullptr> ArbitraryLazyMontgomeryModIntBase(const T &b) : _v(reduce(ULong(b % mod + mod) * n2)) {} static UInt reduce(const ULong &b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint &operator+=(const mint &b) { if (Int(_v += b._v - 2 * mod) < 0) _v += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (Int(_v -= b._v) < 0) _v += 2 * mod; return *this; } mint &operator*=(const mint &b) { _v = reduce(ULong(_v) * b._v); return *this; } mint &operator/=(const mint &b) { *this *= b.inv(); return *this; } friend mint operator+(const mint &a, const mint &b) { return mint(a) += b; } friend mint operator-(const mint &a, const mint &b) { return mint(a) -= b; } friend mint operator*(const mint &a, const mint &b) { return mint(a) *= b; } friend mint operator/(const mint &a, const mint &b) { return mint(a) /= b; } bool operator==(const mint &b) const { return (_v >= mod ? _v - mod : _v) == (b._v >= mod ? b._v - mod : b._v); } bool operator!=(const mint &b) const { return (_v >= mod ? _v - mod : _v) != (b._v >= mod ? b._v - mod : b._v); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } template <class T> mint pow(T n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } mint inv() const { Int s = getmod(), t = val(), m0 = 0, m1 = 1; while (t) { Int u = s / t; std::swap(s -= t * u, t); std::swap(m0 -= m1 * u, m1); } if (m0 < 0) m0 += getmod(); return mint(m0); } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const mint &x) { return os << x.val(); } template <class IStream, is_istream_t<IStream> * = nullptr> friend IStream &operator>>(IStream &is, mint &x) { Long t; is >> t; x = mint(t); return (is); } UInt val() const { UInt ret = reduce(_v); return ret >= mod ? ret - mod : ret; } static UInt getmod() { return mod; } }; template <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>; template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; } // namespace kk2 #endif // KK2_MODINT_MONT_ARB_HPP // #include <kk2/modint/modint.hpp> #ifndef KK2_RANDOM_GEN_HPP #define KK2_RANDOM_GEN_HPP 1 #ifndef KK2_RANDOM_SEED_HPP #define KK2_RANDOM_SEED_HPP 1 namespace kk2 { namespace random { using u64 = unsigned long long; inline u64 non_deterministic_seed() { u64 seed = std::chrono::duration_cast<std::chrono::nanoseconds>( std::chrono::high_resolution_clock::now().time_since_epoch()) .count(); seed ^= reinterpret_cast<u64>(&seed); seed ^= seed << 5; seed ^= seed >> 41; seed ^= seed << 20; return seed; } inline u64 deterministic_seed() { return 5801799128519729247ull; } inline u64 seed() { #if defined(KK2_RANDOM_DETERMINISTIC) return deterministic_seed(); #else return non_deterministic_seed(); #endif } } // namespace random } // namespace kk2 #endif // KK2_RANDOM_SEED_HPP namespace kk2 { namespace random { using i64 = long long; using u64 = unsigned long long; inline u64 rng() { static std::mt19937_64 mt(kk2::random::seed()); return mt(); } // [l, r) inline i64 rng(i64 l, i64 r) { assert(l < r); return l + rng() % (r - l); } // [l, r) template <class T> std::vector<T> random_vector(int n, T l, T r) { std::vector<T> res(n); for (int i = 0; i < n; i++) res[i] = rng(l, r); return res; } // [l, r) std::vector<i64> distinct_rng(i64 l, i64 r, i64 n) { assert(l < r and n <= r - l); std::unordered_set<i64> st; for (i64 i = n; i; --i) { i64 m = rng(l, r + 1 - i); if (st.find(m) != st.end()) m = r - i; st.insert(m); } std::vector<i64> res(st.begin(), st.end()); std::sort(res.begin(), res.end()); return res; } template <class Iter> void shuffle(Iter first, Iter last) { if (first == last) return; int len = 1; for (auto it = first + 1; it != last; ++it) { len++; int j = rng(0, len); if (j != len - 1) std::iter_swap(first + j, it); } } template <class T> std::vector<T> perm(int n) { std::vector<T> res(n); std::iota(res.begin(), res.end(), T(0)); shuffle(res.begin(), res.end()); return res; } template <class T> std::vector<T> choices(int l, int r, int k) { assert(l < r and k <= r - l); std::vector<T> res(r - l); std::iota(res.begin(), res.end(), T(l)); shuffle(res.begin(), res.end()); res.resize(k); return res; } } // namespace random } // namespace kk2 #endif // KK2_RANDOM_GEN_HPP #ifndef KK2_MATH_IS_PRIME_HPP #define KK2_MATH_IS_PRIME_HPP 1 #ifndef KK2_MATH_MOD_POW_MOD_HPP #define KK2_MATH_MOD_POW_MOD_HPP 1 namespace kk2 { template <class S, class T, class U> constexpr S pow_mod(T x, U n, T m) { assert(n >= 0); if (m == 1) return S(0); S _m = m, r = 1; S y = x % _m; if (y < 0) y += _m; while (n) { if (n & 1) r = (r * y) % _m; if (n >>= 1) y = (y * y) % _m; } return r; } } // namespace kk2 #endif // KK2_MATH_MOD_POW_MOD_HPP namespace kk2 { namespace number_theory { template <class T, class U> bool miller_rabin(const T &n, const std::vector<T> &ws) { if (n <= 2) return n == 2; if (~n & 1) return false; T d = n - 1; while (~d & 1) d >>= 1; U e = 1, rev = n - 1; for (T w : ws) { if (w % n == 0) continue; T t = d; U y = pow_mod<T, T, U>(w, t, n); while (t != n - 1 and y != e and y != rev) { y = y * y % n; t <<= 1; } if (y != rev and ~t & 1) return false; } return true; } bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <class mint> bool miller_rabin_mont(unsigned long long n, const std::vector<unsigned long long> &ws) { if (n <= 2) return n == 2; if (~n & 1) return false; if (mint::getmod() != n) mint::setmod(n); unsigned long long d = n - 1; while (~d & 1) d >>= 1; mint e = 1, rev = n - 1; for (unsigned long long w : ws) { if (w % n == 0) continue; unsigned long long t = d; mint y = mint(w).pow(t); while (t != n - 1 and y != e and y != rev) { y *= y; t <<= 1; } if (y != rev and ~t & 1) return false; } return true; } bool is_prime(unsigned long long n) { using mint32 = ArbitraryLazyMontgomeryModInt<54305750>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<54305750>; if (n <= 2) return n == 2; if (~n & 1) return false; if (n < (1ull << 30)) { return miller_rabin_mont<mint32>(n, {2, 7, 61}); } else if (n < (1ull << 62)) { return miller_rabin_mont<mint64>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } else { return miller_rabin_u64(n); } } }; // namespace number_theory using number_theory::is_prime; }; // namespace kk2 #endif // KK2_MATH_IS_PRIME_HPP using namespace std; void solve() { /* ロリハしたいけど,小さい素数だとフェル小でループする 素数を乱択したら,hackされないか? */ int k; kin >> k; vc<pair<string, i64>> a(k); kin >> a; using mint = kk2::ArbitraryLazyMontgomeryModInt<-1>; // using mint = kk2::ModInt<-1>; auto is_ok = [&]() -> bool { mint base = kk2::random::rng(2, mint::getmod() - 1); // base = 2; mint ibase = base.inv(); mint bpw = 1; mint r1, r2; rep (i, k) { auto [s, t] = a[i]; mint x1 = 0, x2 = 0; repi (j, s.size()) { x1 = x1 * base + mint(s[j]); x2 = x2 * ibase + mint(s[j]); } if (base.pow(s.size()) == mint(1)) return true; if (ibase.pow(s.size()) == mint(1)) return true; x1 *= base.pow(t).pow(s.size()) - 1; x1 /= base.pow(s.size()) - 1; x2 *= ibase.pow(t).pow(s.size()) - 1; x2 /= ibase.pow(s.size()) - 1; r1 += x1 * bpw, r2 += x2 * bpw.inv(); bpw *= base.pow(t).pow(s.size()); } // kout << bpw << kendl; return base * r1 == r2 * bpw; }; int t = 10; rep (t) { int p; do { p = kk2::random::rng(1e8, 1e9); } while (!kk2::is_prime(p)); mint::setmod(p); // kout << mint::getmod() << kendl; if (!is_ok()) { No(); return; } } Yes(); } int main() { int t = 1; // kin >> t; rep (t) solve(); return 0; } // Author: kk2 // converted by https://github.com/kk2a/cpp-bundle // 2025-04-01 10:25:40