結果
| 問題 |
No.3089 Base M Numbers, But Only 0~9
|
| コンテスト | |
| ユーザー |
shkiiii_
|
| 提出日時 | 2025-04-04 23:01:03 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,216 bytes |
| コンパイル時間 | 2,119 ms |
| コンパイル使用メモリ | 201,184 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-04-04 23:01:19 |
| 合計ジャッジ時間 | 3,425 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 13 WA * 6 |
ソースコード
#include<bits/stdc++.h>
// #include<atcoder/all>
// #include<boost/multiprecision/cpp_int.hpp>
using namespace std;
// using namespace atcoder;
// using bint = boost::multiprecision::cpp_int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using vi = vector<ll>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ve = vector<vector<int>>;
using vb = vector<bool>;
using vvb = vector<vb>;
#define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++)
#define rrep(i,l,r) for(ll i = r-1;i >= l;i--)
#define ALL(x) (x).begin(),(x).end()
#define sz(c) ((ll)(c).size())
#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())
#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())
// #define MOD 1000000007
#define MOD 998244353
template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;
template<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?" ":"");return os;}
template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}
template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<" "<<p.second;return os;}
template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}
template<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}
ld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< MOD >;
using vm = vector<modint>;
using vvm = vector<vm>;
int main(){
ios_base::sync_with_stdio(0), cin.tie(0);
ll m;cin >> m;
string s;cin >> s;
vm C(10),S(10);
rep(i,0,m%10){
modint k = m/10;
k = k*(k+1)/2;
S[i] = k*10 + (m/10%MOD + 1)*i%MOD;
C[i] = m/10 + 1;
}
rep(i,m%10,10){
modint k = m/10-1;
k = k*(k+1)/2;
S[i] = k*10 + (m/10%MOD)*i%MOD;
C[i] = m/10;
}
vm pw(sz(s)+1,1);
rep(i,0,sz(s))pw[i+1] = pw[i]*(m%MOD);
modint prod = 1;
rrep(i,0,sz(s))prod *= C[s[i]-'0'];
modint res = 0;
rrep(i,0,sz(s)){
int w = s[i]-'0';
res += prod/C[w]*pw[sz(s)-1-i]*S[w];
}
cout << res << endl;
modint sm = 0;
// rep(i,0,10)cout << C[i] << " " << S[i] << " aa" << endl;
rep(i,0,10)sm += S[i];
// cout << sm << " " << modint(m)*(m-1)/2 << endl;
assert(sm == modint(m)*(m-1)/2);
modint gg = 0;
rep(i,0,10)gg += C[i];
assert(gg == m);
return 0;
}
shkiiii_