結果

問題 No.3089 Base M Numbers, But Only 0~9
ユーザー dyktr_06
提出日時 2025-04-04 23:03:21
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 22 ms / 2,000 ms
コード長 14,661 bytes
コンパイル時間 2,975 ms
コンパイル使用メモリ 199,168 KB
実行使用メモリ 11,440 KB
最終ジャッジ日時 2025-04-04 23:03:26
合計ジャッジ時間 4,040 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))

typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;

template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }

const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);

template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }

template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; }

template <typename T>
long long binary_search(long long ok, long long ng, T check){
    while(abs(ok - ng) > 1){
        long long mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long double binary_search_real(long double ok, long double ng, T check, int iter = 100){
    for(int i = 0; i < iter; ++i){
        long double mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long long trisum(T a, T b){
    long long res = ((b - a + 1) * (a + b)) / 2;
    return res;
}

template <typename T>
T intpow(T x, int n){
    T ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}

template <typename T>
T getReminder(T a, T b){
    if(b == 0) return -1;
    if(a >= 0 && b > 0){
        return a % b;
    } else if(a < 0 && b > 0){
        return ((a % b) + b) % b;
    } else if(a >= 0 && b < 0){
        return a % b;
    } else{
        return (abs(b) - abs(a % b)) % b;
    }
}

template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }

template <long long Modulus>
struct ModInt{
    long long val;
    static constexpr int mod() { return Modulus; }
    constexpr ModInt(const long long _val = 0) noexcept : val(_val) {
        normalize();
    }
    void normalize(){
        val = (val % Modulus + Modulus) % Modulus;
    }
    inline ModInt &operator+=(const ModInt &rhs) noexcept {
        if(val += rhs.val, val >= Modulus) val -= Modulus;
        return *this;
    }
    inline ModInt &operator-=(const ModInt &rhs) noexcept {
        if(val -= rhs.val, val < 0) val += Modulus;
        return *this;
    }
    inline ModInt &operator*=(const ModInt &rhs) noexcept {
        val = val * rhs.val % Modulus;
        return *this;
    }
    inline ModInt &operator/=(const ModInt &rhs) noexcept {
        val = val * inv(rhs.val).val % Modulus;
        return *this;
    }
    inline ModInt &operator++() noexcept {
        if(++val >= Modulus) val -= Modulus;
        return *this;
    }
    inline ModInt operator++(int) noexcept {
        ModInt t = val;
        if(++val >= Modulus) val -= Modulus;
        return t;
    }
    inline ModInt &operator--() noexcept {
        if(--val < 0) val += Modulus;
        return *this;
    }
    inline ModInt operator--(int) noexcept {
        ModInt t = val;
        if(--val < 0) val += Modulus;
        return t;
    }
    inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; }
    inline ModInt inv(void) const { return inv(val); }
    ModInt pow(long long n) const {
        assert(0 <= n);
        ModInt x = *this, r = 1;
        while(n){
            if(n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    ModInt inv(const long long n) const {
        long long a = n, b = Modulus, u = 1, v = 0;
        while(b){
            long long t = a / b;
            a -= t * b; std::swap(a, b);
            u -= t * v; std::swap(u, v);
        }
        u %= Modulus;
        if(u < 0) u += Modulus;
        return u;
    }
    friend inline ModInt operator+(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) += rhs; }
    friend inline ModInt operator-(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) -= rhs; }
    friend inline ModInt operator*(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) *= rhs; }
    friend inline ModInt operator/(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) /= rhs; }
    friend inline bool operator==(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val == rhs.val; }
    friend inline bool operator!=(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val != rhs.val; }
    friend inline std::istream &operator>>(std::istream &is, ModInt &x) noexcept {
        is >> x.val;
        x.normalize();
        return is;
    }
    friend inline std::ostream &operator<<(std::ostream &os, const ModInt &x) noexcept { return os << x.val; }
};

using mint = ModInt<MOD>;

namespace modcalc{
    using i64 = long long;

    i64 modpow(i64 x, i64 n, const i64 &m){
        i64 ret = 1 % m;
        x %= m;
        while(n > 0){
            if(n & 1) (ret *= x) %= m;
            (x *= x) %= m;
            n >>= 1;
        }
        return ret;
    }

    i64 modinv(i64 a, const i64 m){
        i64 b = m, u = 1, v = 0;
        while(b){
            i64 t = a / b;
            a -= t * b; std::swap(a, b);
            u -= t * v; std::swap(u, v);
        }
        u %= m;
        if(u < 0) u += m;
        return u;
    }

    i64 modarithmeticsum(i64 a, i64 d, i64 n, const i64 m){
        i64 m2 = m * 2;
        a %= m2, n %= m2, d %= m2;
        i64 b = (n + m2 - 1) * d % m2;
        return ((n * (a * 2 + b) % m2) / 2) % m;
    }

    i64 modgeometricsum(i64 a, i64 r, i64 n, const i64 m){
        a %= m;
        if(r == 1){
            n %= m;
            return a * n % m;
        }
        return a * (modpow(r, n, m) + m - 1) % m * modinv(r - 1, m) % m;
    }

    i64 modgeometricsum2(i64 a, i64 r, i64 n, const i64 m){
        a %= m;
        if(r == 1){
            n %= m;
            return a * n % m;
        }
        i64 ret = 0;
        i64 x = 1 % m;
        i64 sum = 0;
        for(int i = 0; n > 0; ++i){
            if(n & 1){
                (ret += x * modpow(r, sum, m) % m) %= m;
                sum |= 1LL << i;
            }
            (x += x * modpow(r, 1LL << i, m) % m) %= m;
            n >>= 1;
        }
        return a * ret % m;
    }

    // https://37zigen.com/tonelli-shanks-algorithm/
    i64 modsqrt(i64 a, const i64 p){
        a %= p;
        if(a <= 1) return a;
        // オイラーの規準
        if(modpow(a, (p - 1) / 2, p) != 1) return -1;
        i64 b = 1;
        while(modpow(b, (p - 1) / 2, p) == 1) b++;
        // p - 1 = m 2^e
        i64 m = p - 1, e = 0;
        while(m % 2 == 0) m >>= 1, e++;
        // x = a^((m + 1) / 2) (mod p)
        i64 x = modpow(a, (m - 1) / 2, p);
        // y = a^{-1} x^2 (mod p)
        i64 y = a * x % p * x % p;
        (x *= a) %= p;
        i64 z = modpow(b, m, p);
        while(y != 1){
            i64 j = 0, t = y;
            while(t != 1){
                (t *= t) %= p;
                j++;
            }
            // e - j ビット目が 1
            z = modpow(z, 1LL << (e - j - 1), p);
            (x *= z) %= p;
            (z *= z) %= p;
            (y *= z) %= p;
            e = j;
        }
        return x;
    }
}

template <typename T, T (*op)(T, T), T(*e)()>
struct SegTree{
    int _n, n;
    std::vector<T> dat;

    SegTree(int _n) : _n(_n) {
        int x = 1;
        while(_n > x){
            x *= 2;
        }
        n = x;
        dat.resize(n * 2);
        for(int i = 0; i < n * 2; ++i){
            dat[i] = e();
        }
    }
    SegTree(std::vector<T> &v) : _n((int) v.size()) {
        int x = 1;
        while((int) v.size() > x){
            x *= 2;
        }
        n = x;
        dat.resize(n * 2);
        for(int i = 0; i < n; ++i){
            set(i, (i < (int) v.size() ? v[i] : e()));
        }
        build();
    }

private:
    void set(int i, const T &x){ dat[i + n] = x; }

    void build(){
        for(int k = n - 1; k >= 1; k--) dat[k] = op(dat[k * 2], dat[k * 2 + 1]);
    }

public:
    T get(int i) const {
        assert(0 <= i && i < n);
        return dat[i + n];
    }

    void update(int i, const T &x){
        assert(0 <= i && i < n);
        i += n;
        dat[i] = x;
        while(i > 0){
            i >>= 1;  // parent
            dat[i] = op(dat[i * 2], dat[i * 2 + 1]);
        }
    }

    T query(int a, int b){
        assert(0 <= a && a <= b && b <= n);
        T vl = e();
        T vr = e();
        int l = a + n;
        int r = b + n;
        while(l < r){
            if(l & 1) vl = op(vl, dat[l++]);
            if(r & 1) vr = op(dat[--r], vr);
            l >>= 1;
            r >>= 1;
        }
        return op(vl, vr);
    }

    template <class F>
    int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if(l == _n) return _n;
        l += n;
        T sm = e();
        do{
            while(l % 2 == 0) l >>= 1;
            if(!f(op(sm, dat[l]))){
                while(l < n){
                    l = (2 * l);
                    if(f(op(sm, dat[l]))){
                        sm = op(sm, dat[l]);
                        l++;
                    }
                }
                return l - n;
            }
            sm = op(sm, dat[l]);
            l++;
        }while((l & -l) != l);
        return _n;
    }

    template <class F>
    int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if(r == 0) return 0;
        r += n;
        T sm = e();
        do{
            r--;
            while(r > 1 && (r % 2)) r >>= 1;
            if(!f(op(dat[r], sm))){
                while(r < n){
                    r = (2 * r + 1);
                    if(f(op(dat[r], sm))){
                        sm = op(dat[r], sm);
                        r--;
                    }
                }
                return r + 1 - n;
            }
            sm = op(dat[r], sm);
        }while((r & -r) != r);
        return 0;
    }
};

mint op(mint a, mint b){ return a * b; }
mint e(){ return 1; }

ll T;

void input(){
    in(T);
}

mint dp1[200001][2], dp2[200001][2];

void solve(){
    ll m; in(m);
    string n; in(n);
    ll len = n.size();

    mint mm = m;
    vector<mint> base(len + 1, 1);
    rep(i, 1, len + 1) base[i] = base[i - 1] * mm;

    dp1[0][0] = 1;
    dp2[0][0] = 0;
    rep(i, len){
        ll d = n[i] - '0';
        if(d == 0){
            ll cnt = m / 10 + (d < m % 10);
            mint s = modcalc::modarithmeticsum(d, 10LL, cnt, MOD);
            dp1[i + 1][1] += dp1[i][0] * (cnt - 1) + dp1[i][1] * cnt;
            dp2[i + 1][1] += dp2[i][0] * (cnt - 1) + s * base[len - 1 - i] * dp1[i][0];
            dp2[i + 1][1] += dp2[i][1] * cnt + s * base[len - 1 - i] * dp1[i][1];
        }else{
            ll cnt = m / 10 + (d < m % 10);
            mint s = modcalc::modarithmeticsum(d, 10LL, cnt, MOD);
            dp1[i + 1][1] += (dp1[i][0] + dp1[i][1]) * cnt;
            dp2[i + 1][1] += dp2[i][0] * cnt + s * base[len - 1 - i] * dp1[i][0];
            dp2[i + 1][1] += dp2[i][1] * cnt + s * base[len - 1 - i] * dp1[i][1];
        }
    }
    out(dp2[len][1]);
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(20);

    T = 1;
    // input();
    while(T--) solve();
}
0