結果

問題 No.3089 Base M Numbers, But Only 0~9
ユーザー shkiiii_
提出日時 2025-04-04 23:18:21
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,291 bytes
コンパイル時間 2,042 ms
コンパイル使用メモリ 199,348 KB
実行使用メモリ 6,144 KB
最終ジャッジ日時 2025-04-04 23:18:34
合計ジャッジ時間 3,295 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 13 WA * 6
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
// #include<atcoder/all>
// #include<boost/multiprecision/cpp_int.hpp>

using namespace std;
// using namespace atcoder;
// using bint = boost::multiprecision::cpp_int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using vi = vector<ll>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ve = vector<vector<int>>;
using vb = vector<bool>;
using vvb = vector<vb>;
#define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++)
#define rrep(i,l,r) for(ll i = r-1;i >= l;i--)
#define ALL(x) (x).begin(),(x).end()
#define sz(c) ((ll)(c).size())
#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())
#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())
// #define MOD 1000000007
#define MOD 998244353
template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;
template<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?" ":"");return os;}
template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}
template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<" "<<p.second;return os;}
template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}
template<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}
ld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}


template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< MOD >;
using vm = vector<modint>;
using vvm = vector<vm>;

int main(){
  
  ios_base::sync_with_stdio(0), cin.tie(0);
  ll m;cin >> m;
  string s;cin >> s;
  vm C(10),S(10);
  rep(i,0,m%10){
    modint k = m/10;
    k = k*(k+1)/2;
    S[i] = k*10 + modint(m/10 + 1)*i;
    C[i] = m/10 + 1;
  }
  rep(i,m%10,10){
    modint k = m/10-1;
    k = k*(k+1)/2;
    S[i] = k*10 + modint(m/10)*i;
    C[i] = m/10;
  }
  vm pw(sz(s)+1,1);
  rep(i,0,sz(s))pw[i+1] = pw[i]*(m%MOD);
  modint prod = 1;
  rrep(i,0,sz(s))prod *= C[s[i]-'0'];
  modint res = 0;
  rrep(i,0,sz(s)){
    int w = s[i]-'0';
    res += prod/C[w]*pw[sz(s)-1-i]*S[w];
  }
  int cnt = 0;
  rep(i,0,sz(s))if(s[i] == '0')cnt++;
  if(sz(s) == cnt)res-=1;
  cout << res << endl;
  modint sm = 0;
  // rep(i,0,10)cout << C[i] << " " << S[i] << " aa" << endl;
  rep(i,0,10)sm += S[i];
  // cout << sm << " " << modint(m)*(m-1)/2 << endl;
  assert(sm == modint(m)*(m-1)/2);
  modint gg = 0;
  rep(i,0,10)gg += C[i];
  assert(gg == m);
  

  return 0;
}
0