結果

問題 No.3089 Base M Numbers, But Only 0~9
ユーザー iomir
提出日時 2025-04-04 23:21:42
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,456 bytes
コンパイル時間 3,164 ms
コンパイル使用メモリ 277,612 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2025-04-04 23:21:47
合計ジャッジ時間 4,779 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 15 WA * 4
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
//#include <atcoder/all>
using namespace std;
//using namespace atcoder;

#define all(v) v.begin(),v.end()
using ll = long long;
using ull = unsigned long long;
using lll = __int128;
using vll=vector<ll>;
using vvll = vector<vector<ll>>;
using P = pair<ll,ll>;
using vp=vector<pair<ll, ll>>;
//using mint=modint1000000007;
//using mint=modint998244353;

const ll INF=1ll<<60;
ll mod10=1e9+7;
ll mod99=998244353;
const double PI = acos(-1);

#define rep(i,n) for (ll i=0;i<n;++i)
#define per(i,n) for(ll i=n-1;i>=0;--i)
#define rep2(i,a,n) for (ll i=a;i<n;++i)
#define per2(i,a,n) for (ll i=a;i>=n;--i)

template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }

template <long long MOD>
struct modint {
    long long value;
    modint(long long x = 0) {
        if (x >= 0) {
            value = x % MOD;
        } else {
            value = MOD - (-x) % MOD;
        }
    }
    modint operator-() const {
        return modint(-value);
    }
    modint operator+() const {
        return modint(*this);
    }
    modint &operator+=(const modint &other) {
        value += other.value;
        if (value >= MOD) {
            value -= MOD;
        }
        return *this;
    }
    modint &operator-=(const modint &other) {
        value += MOD - other.value;
        if (value >= MOD) {
            value -= MOD;
        }
        return *this;
    }
    modint &operator*=(const modint other) {
        value = value * other.value % MOD;
        return *this;
    }
    modint &operator/=(modint other) {
        (*this) *= other.inv();
        return *this;
    }
    modint operator+(const modint &other) const {
        return modint(*this) += other;
    }
    modint operator-(const modint &other) const {
        return modint(*this) -= other;
    }
    modint operator*(const modint &other) const {
        return modint(*this) *= other;
    }
    modint operator/(const modint &other) const {
        return modint(*this) /= other;
    }
    modint pow(long long x) const {
        modint ret(1), mul(value);
        while (x > 0) {
            if (x % 2 == 1) {
                ret *= mul;
            }
            mul *= mul;
            x /= 2;
        }
        return ret;
    }
    modint inv() const {
        return pow(MOD - 2);
    }
    bool operator==(const modint &other) const {
        return value == other.value;
    }
    bool operator!=(const modint &other) const {
        return value != other.value;
    }
    friend std::ostream &operator<<(std::ostream &os, const modint &x) {
        return os << x.value;
    }
    friend std::istream &operator>>(std::istream &is, modint &x) {
        long long v;
        is >> v;
        x = modint<MOD>(v);
        return is;
    }
};

using mint = modint<998244353>;
using mod107 = modint<1000000007>;

bool solve(){
   ll M;cin>>M;
   string S;cin>>S;
   mint s=1;
   ll N=S.size();
   rep(i,N){
      s*=M/10+(S[i]-'0'<M%10)-(ll)(i==0&&S[i]=='0');
   }

   mint ans=0;
   mint k=1;
   per(i,N){
      ll c=M/10+(S[i]-'0'<M%10)-(ll)(i==0&&S[i]=='0');
      if(i==0&&S[i]=='0') ans+=(s/c)*(c*(c+1)/2)*10*k;
      else ans+=(s/c)*((S[i]-'0')*c+c*(c-1)/2*10)*k;
      k*=M;
   }
   cout << ans << endl;
   return 0;
}



int main(){
   cin.tie(0);
   ios::sync_with_stdio(false);
   ll T=1;//cin>>T;
   rep(i,T) solve();
}
    
0