結果
問題 |
No.3089 Base M Numbers, But Only 0~9
|
ユーザー |
![]() |
提出日時 | 2025-04-04 23:22:49 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,339 bytes |
コンパイル時間 | 2,074 ms |
コンパイル使用メモリ | 199,888 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-04-04 23:22:52 |
合計ジャッジ時間 | 2,886 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 13 WA * 6 |
ソースコード
#include<bits/stdc++.h> // #include<atcoder/all> // #include<boost/multiprecision/cpp_int.hpp> using namespace std; // using namespace atcoder; // using bint = boost::multiprecision::cpp_int; using ll = long long; using ull = unsigned long long; using ld = long double; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<ll>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ve = vector<vector<int>>; using vb = vector<bool>; using vvb = vector<vb>; #define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++) #define rrep(i,l,r) for(ll i = r-1;i >= l;i--) #define ALL(x) (x).begin(),(x).end() #define sz(c) ((ll)(c).size()) #define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin()) #define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin()) // #define MOD 1000000007 #define MOD 998244353 template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>; template<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?" ":"");return os;} template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;} template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<" "<<p.second;return os;} template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;} template<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;} template<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;} ld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));} template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< MOD >; using vm = vector<modint>; using vvm = vector<vm>; int main(){ ios_base::sync_with_stdio(0), cin.tie(0); ll m;cin >> m; string s;cin >> s; vm C(10),S(10); rep(i,0,m%10){ modint k = m/10; k = k*(k+1)/2; S[i] = k*10 + modint(m/10 + 1)*i; C[i] = m/10 + 1; } rep(i,m%10,10){ modint k = m/10-1; k = k*(k+1)/2; S[i] = k*10 + modint(m/10)*i; C[i] = m/10; } vm pw(sz(s)+1,1); rep(i,0,sz(s))pw[i+1] = pw[i]*(m%MOD); // modint prod = 1; // rrep(i,0,sz(s))prod *= C[s[i]-'0']; modint res = 0; vm L(sz(s)+1,1),R(sz(s)+1,1); rep(i,0,sz(s))L[i+1] = L[i]*C[s[i]-'0']; rrep(i,0,sz(s))R[i] = R[i+1]*C[s[i]-'0']; rrep(i,0,sz(s)){ int w = s[i]-'0'; res += L[i]*R[i+1]*pw[sz(s)-1-i]*S[w]; } cout << res << endl; modint sm = 0; // rep(i,0,10)cout << C[i] << " " << S[i] << " aa" << endl; rep(i,0,10)sm += S[i]; // cout << sm << " " << modint(m)*(m-1)/2 << endl; assert(sm == modint(m)*(m-1)/2); modint gg = 0; rep(i,0,10)gg += C[i]; assert(gg == m); return 0; }