結果
| 問題 |
No.1762 🐙🐄🌲
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 20:56:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,162 ms / 4,000 ms |
| コード長 | 4,376 bytes |
| コンパイル時間 | 199 ms |
| コンパイル使用メモリ | 82,716 KB |
| 実行使用メモリ | 265,760 KB |
| 最終ジャッジ日時 | 2025-04-09 20:58:16 |
| 合計ジャッジ時間 | 18,315 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 47 |
ソースコード
MOD = 998244353
def main():
import sys
N, P = map(int, sys.stdin.readline().split())
# Precompute factorial and inverse factorial up to needed values
max_fact = 5 * 10**5 * 3 # 3C can be up to ~3* (5e5/4) ~ 375e3
max_needed = max(3*((5*10**5)//4), (5*10**5) *3, (5*10**5)*7)
max_fact = max(max_fact, max_needed)
fact = [1] * (max_fact + 1)
for i in range(1, max_fact + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1]*(max_fact +1)
inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD)
for i in range(max_fact-1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
# Check validity
if (N-1) %4 !=0:
print(0)
return
C = (N-1)//4
O = N - C
if O <0 or P > O:
print(0)
return
K = C -1 -7*P
m = O - P
if K <0 or K >6*m or m <0:
print(0)
return
# Compute combinations: C(n, C) and C(O, P)
def comb(n, k):
if k <0 or k >n:
return 0
return fact[n] * inv_fact[k] % MOD * inv_fact[n -k] % MOD
c_n_c = comb(N, C)
c_o_p = comb(O, P)
ans = c_n_c * c_o_p % MOD
# Compute (3C)! / (3!^C)
term3C = 1
term3C = term3C * fact[3*C] % MOD
inv6 = pow(6, MOD-2, MOD)
inv6_C = pow(inv6, C, MOD)
term3C = term3C * inv6_C % MOD
ans = ans * term3C % MOD
# Compute (C-1)! / 7!^P
if C-1 <0:
print(0)
return
termC1 = fact[C-1] if C-1 >=0 else 1
inv7f = pow(5040, MOD-2, MOD)
inv7f_P = pow(inv7f, P, MOD)
termC1 = termC1 * inv7f_P % MOD
ans = ans * termC1 % MOD
# Compute [x^K] (sum_{s=0}^6 x^s /s! )^m
# Implement NTT-based multiplication
# Define NTT functions
def ntt(a, inverse=False):
# Cooley-Tukey FFT algorithm
n = len(a)
log_n = (n).bit_length() -1
rev = [0]*n
for i in range(n):
rev[i] = rev[i >>1] >>1
if i &1:
rev[i] |= n >>1
if i < rev[i]:
a[i], a[rev[i]] = a[rev[i]], a[i]
root = pow(3, (MOD-1)//n, MOD) if not inverse else pow(3, MOD-1 - (MOD-1)//n, MOD)
roots = [1]*(n//2)
for i in range(1, len(roots)):
roots[i] = roots[i-1] * root % MOD
current_length = 1
while current_length < n:
for i in range(0, n, 2*current_length):
for j in range(current_length):
idx_e = i + j
idx_o = i + j + current_length
even = a[idx_e]
odd = a[idx_o] * roots[j * (n//(2*current_length))] % MOD
a[idx_e] = (even + odd) % MOD
a[idx_o] = (even - odd) % MOD
if a[idx_o] <0:
a[idx_o] += MOD
current_length *=2
if inverse:
inv_n = pow(n, MOD-2, MOD)
for i in range(n):
a[i] = a[i] * inv_n % MOD
return a
def multiply_ntt(a, b, K):
# compute a * b mod x^(K+1)
len_a = len(a)
len_b = len(b)
if len_a ==0 or len_b==0:
return []
new_len = len_a + len_b -1
n = 1
while n < new_len:
n <<=1
a_ntt = a + [0]*(n - len_a)
b_ntt = b + [0]*(n - len_b)
a_ntt = ntt(a_ntt)
b_ntt = ntt(b_ntt)
c_ntt = [(x*y) % MOD for x, y in zip(a_ntt, b_ntt)]
c_ntt = ntt(c_ntt, inverse=True)
res = [c_ntt[i] for i in range(min(new_len, K+1))]
return res
# Function to compute poly^exp mod x^(K+1)
def poly_pow(poly, exp, K):
result = [1]
while exp >0:
if exp %2 ==1:
result = multiply_ntt(result, poly, K)
poly = multiply_ntt(poly, poly, K)
exp //=2
return result
# Generate f(x) = sum_{s=0}^6 x^s/s!
f = [0]*(7)
for s in range(7):
f[s] = inv_fact[s]
# Compute f(x)^m mod x^{K+1}
# Handle m=0 case
if m ==0:
if K ==0:
coeff = 1
else:
coeff =0
else:
poly = f[:7]
res_poly = poly_pow(poly, m, K)
if K < len(res_poly):
coeff = res_poly[K]
else:
coeff =0
ans = ans * coeff % MOD
print(ans)
if __name__ == '__main__':
main()
lam6er