結果

問題 No.2061 XOR Sort
ユーザー eQe
提出日時 2025-04-12 14:56:23
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 411 ms / 2,000 ms
コード長 6,588 bytes
コンパイル時間 6,531 ms
コンパイル使用メモリ 333,616 KB
実行使用メモリ 92,544 KB
最終ジャッジ日時 2025-04-12 14:56:37
合計ジャッジ時間 11,824 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
namespace my{
using ml=atcoder::modint998244353;
auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;}
auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();}
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define RDVL(T,n,...) vec<T>__VA_ARGS__;resizes({n},__VA_ARGS__);lin(__VA_ARGS__)
#define VL(n,...) RDVL(ll,n,__VA_ARGS__)
#define FO(n) for(ll ij=n;ij-->0;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a)
#define bit_sizeof(T) ll(sizeof(T)*CHAR_BIT)
#define schrodinger(p,c) (p?c:remove_cvref_t<decltype(c)>{})
#define base_operator(op,type) auto operator op(const type&v)const{auto copy=*this;return copy op##=v;}
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
using ull=unsigned long long;
using ulll=__uint128_t;
using lll=__int128_t;
using index_t=int;
istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);}
istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const lll&x){return o<<(x<0?"-":"")<<ulll(x>0?x:-x);}
constexpr auto range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};}
constexpr auto range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};}
const string newline{char(10)};
const string space{char(32)};
constexpr auto pow(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;}
constexpr auto at2(auto x,auto i){return x>>i&1;}

template<class A,class B>struct pair{
  A a;B b;
  pair()=default;
  pair(A a,B b):a(a),b(b){}
  pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
  auto operator<=>(const pair&)const=default;
  pair operator+(const pair&p)const{return{a+p.a,b+p.b};}
  friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;}
  friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;}
};

template<class T>struct queue:std::queue<T>{
  queue(const initializer_list<T>&a={}){fe(a,e)this->emplace(e);}
  queue(const vector<T>&a){fe(a,e)this->emplace(e);}
  ll size()const{return std::queue<T>::size();}
  T pop(){T r=this->front();std::queue<T>::pop();return r;}
  T sum()const{T r{};fe(*this,e)r+=e;return r;}
  friend ostream&operator<<(ostream&o,queue q){while(q.size())o<<q.pop()<<schrodinger(q.size()>0,space);return o;}
};

template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>;

template<class V>concept vectorial=is_base_of_v<vector<typename remove_cvref_t<V>::value_type>,remove_cvref_t<V>>;
template<class V>constexpr int rank(){if constexpr(vectorial<V>)return rank<typename V::value_type>()+1;else return 0;}
template<class T>struct core_t_helper{using core_t=T;};
template<vectorial V>struct core_t_helper<V>{using core_t=typename core_t_helper<typename V::value_type>::core_t;};
template<class T>using core_t=core_t_helper<T>::core_t;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){ll n=v.size();fo(i,n)o<<v[i]<<schrodinger(i<n-1,vectorial<V>?newline:space);return o;}

template<class V>struct vec;
template<int rank,class T>struct hvec_helper{using type=vec<typename hvec_helper<rank-1,T>::type>;};
template<class T>struct hvec_helper<0,T>{using type=T;};
template<int rank,class T>using hvec=typename hvec_helper<rank,T>::type;

template<class V>struct vec:vector<V>{
  static constexpr int R=rank<vec<V>>();
  using C=core_t<V>;
  using vector<V>::vector;
  vec(const vector<V>&v){vector<V>::operator=(v);}
  vec(const auto&...a)requires(sizeof...(a)>=3){resizes(a...);}
  void resizes(const auto&...a){*this=make(a...);}
  static auto make(ll n,const auto&...a){if constexpr(sizeof...(a)==1)return vec<C>(n,array{a...}[0]);else return vec<decltype(make(a...))>(n,make(a...));}

  vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
  vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;}
  vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;}
  vec&operator+=(const C&c){fe(*this,e)e+=c;return*this;}
  vec&operator*=(const C&c){fe(*this,e)e*=c;return*this;}
  base_operator(^,vec)
  base_operator(+,vec)
  base_operator(-,vec)
  base_operator(+,C);
  base_operator(*,C);

  vec&operator++(){fe(*this,e)++e;return*this;}
  vec&operator--(){fe(*this,e)--e;return*this;}

  ll size()const{return vector<V>::size();}

  auto scan(const auto&f)const{
    pair<C,bool>r{};
    fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;
    return r;
  }
  auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;}
};
template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>;
vec(ll)->vec<ll>;

template<class...A>void resizes(const array<ll,common_type_t<A...>::R+1>&s,A&...a){(apply([&](const auto&...b){a.resizes(b...); },s),...);}

void lin(auto&...a){(cin>>...>>a);}

void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<schrodinger(--n>0,space)),...);cout<<newline;}

template<unsigned_integral T,ll B=bit_sizeof(T)>struct msb_first_binary_trie{
  struct node{
    index_t elem_count;
    array<node*,2>child;
    node():elem_count(),child{nullptr,nullptr}{}
  };

  using node_ptr=node*;
  node_ptr r;
  msb_first_binary_trie(const vec<ll>&a={}):r(new node){fe(a,e)emplace(e);}

  node_ptr root()const{return r;}
  ll size()const{return r?r->elem_count:0;}
  ll size(node_ptr p)const{return p?p->elem_count:0;}

  node_ptr inner_emplace(T x,node_ptr p,ll b=B-1){
    if(!p)p=new node;
    p->elem_count++;
    if(b<0)return p;
    bool f=at2(x,b);
    p->child[f]=inner_emplace(x,p->child[f],b-1);
    return p;
  }
  void emplace(T x){inner_emplace(x,r);}
};

single_testcase
void solve(){
  LL(N);
  VL(N,a);

  constexpr ll B=bit_sizeof(uint32_t);
  msb_first_binary_trie<uint32_t>mbt(a);
  queue<pair<msb_first_binary_trie<uint32_t>::node_ptr,ll>>q{{mbt.root(),0}};

  vec<ll>is_branching(B+1);
  while(q.size()){
    auto[p,d]=q.pop();
    is_branching[d]|=(p->child[0]&&p->child[1]);
    fe(p->child,e)if(e)q.emplace(e,d+1);
  }
  pp(ml(2).pow(is_branching.sum()));
}}
0