結果
| 問題 |
No.1884 Sequence
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 21:46:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,381 bytes |
| コンパイル時間 | 551 ms |
| コンパイル使用メモリ | 82,024 KB |
| 実行使用メモリ | 152,632 KB |
| 最終ジャッジ日時 | 2025-04-15 21:47:51 |
| 合計ジャッジ時間 | 15,074 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 33 WA * 5 TLE * 2 |
ソースコード
import sys
import math
def input():
return sys.stdin.read()
def main():
data = input().split()
N = int(data[0])
A = list(map(int, data[1:N+1]))
S = [x for x in A if x != 0]
if not S:
print("Yes")
return
S.sort()
if S[0] == S[-1]:
print("Yes")
return
# Compute GCD of differences
diffs = []
for i in range(1, len(S)):
diffs.append(S[i] - S[i-1])
g = 0
for d in diffs:
g = math.gcd(g, d)
# Function to generate all divisors of g
def get_divisors(x):
if x == 0:
return []
divisors = set()
for i in range(1, int(math.isqrt(x)) + 1):
if x % i == 0:
divisors.add(i)
divisors.add(x // i)
return sorted(divisors)
divisors = get_divisors(g)
# Also consider the candidate d from (max_S - min_S) / (N-1)
max_S = S[-1]
min_S = S[0]
if (max_S - min_S) % (N-1) == 0:
d_candidate = (max_S - min_S) // (N-1)
divisors.append(d_candidate)
# Remove duplicates and ensure divisors are positive
divisors = list(set(divisors))
divisors = [d for d in divisors if d > 0]
# Check each divisor
for d in divisors:
# Check all elements have the same remainder mod d
remainder = S[0] % d
valid = True
for x in S:
if x % d != remainder:
valid = False
break
if not valid:
continue
a = remainder
if a == 0:
a += d # Try to make a positive, but then check if it's valid
# Check if a is positive and allows S[0] to be in the sequence
# S[0] = a + k*d => k = (S[0] - a)/d
if a == 0:
a = d # To ensure a is positive
k = (S[0] - a) // d
if k < 0 or k >= N:
continue
# Now check if all elements in S are in the sequence a + i*d for 0 <= i < N
valid = True
for x in S:
delta = x - a
if delta % d != 0:
valid = False
break
k = delta // d
if k < 0 or k >= N:
valid = False
break
if valid:
# Check all terms are positive
if a <= 0:
continue
# The last term is a + (N-1)*d
if a + (N-1)*d <= 0:
continue
print("Yes")
return
# Check the case where a is min_S and d is (max_S - min_S) / k, where k is the number of steps between min and max
# This is a special case where the sequence starts with min_S and ends with max_S
if (max_S - min_S) % (N-1) == 0:
d = (max_S - min_S) // (N-1)
if d == 0:
print("Yes")
return
# Check if all elements are in the sequence min_S, min_S +d, ..., min_S + (N-1)*d
valid = True
for x in S:
delta = x - min_S
if delta % d != 0:
valid = False
break
k = delta // d
if k < 0 or k >= N:
valid = False
break
if valid:
print("Yes")
return
print("No")
if __name__ == "__main__":
main()
lam6er