結果
問題 |
No.1884 Sequence
|
ユーザー |
![]() |
提出日時 | 2025-04-15 21:47:55 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,381 bytes |
コンパイル時間 | 379 ms |
コンパイル使用メモリ | 82,416 KB |
実行使用メモリ | 152,880 KB |
最終ジャッジ日時 | 2025-04-15 21:49:27 |
合計ジャッジ時間 | 13,635 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 33 WA * 5 TLE * 2 |
ソースコード
import sys import math def input(): return sys.stdin.read() def main(): data = input().split() N = int(data[0]) A = list(map(int, data[1:N+1])) S = [x for x in A if x != 0] if not S: print("Yes") return S.sort() if S[0] == S[-1]: print("Yes") return # Compute GCD of differences diffs = [] for i in range(1, len(S)): diffs.append(S[i] - S[i-1]) g = 0 for d in diffs: g = math.gcd(g, d) # Function to generate all divisors of g def get_divisors(x): if x == 0: return [] divisors = set() for i in range(1, int(math.isqrt(x)) + 1): if x % i == 0: divisors.add(i) divisors.add(x // i) return sorted(divisors) divisors = get_divisors(g) # Also consider the candidate d from (max_S - min_S) / (N-1) max_S = S[-1] min_S = S[0] if (max_S - min_S) % (N-1) == 0: d_candidate = (max_S - min_S) // (N-1) divisors.append(d_candidate) # Remove duplicates and ensure divisors are positive divisors = list(set(divisors)) divisors = [d for d in divisors if d > 0] # Check each divisor for d in divisors: # Check all elements have the same remainder mod d remainder = S[0] % d valid = True for x in S: if x % d != remainder: valid = False break if not valid: continue a = remainder if a == 0: a += d # Try to make a positive, but then check if it's valid # Check if a is positive and allows S[0] to be in the sequence # S[0] = a + k*d => k = (S[0] - a)/d if a == 0: a = d # To ensure a is positive k = (S[0] - a) // d if k < 0 or k >= N: continue # Now check if all elements in S are in the sequence a + i*d for 0 <= i < N valid = True for x in S: delta = x - a if delta % d != 0: valid = False break k = delta // d if k < 0 or k >= N: valid = False break if valid: # Check all terms are positive if a <= 0: continue # The last term is a + (N-1)*d if a + (N-1)*d <= 0: continue print("Yes") return # Check the case where a is min_S and d is (max_S - min_S) / k, where k is the number of steps between min and max # This is a special case where the sequence starts with min_S and ends with max_S if (max_S - min_S) % (N-1) == 0: d = (max_S - min_S) // (N-1) if d == 0: print("Yes") return # Check if all elements are in the sequence min_S, min_S +d, ..., min_S + (N-1)*d valid = True for x in S: delta = x - min_S if delta % d != 0: valid = False break k = delta // d if k < 0 or k >= N: valid = False break if valid: print("Yes") return print("No") if __name__ == "__main__": main()