結果
| 問題 |
No.1352 Three Coins
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 22:04:38 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 171 ms / 2,000 ms |
| コード長 | 1,338 bytes |
| コンパイル時間 | 441 ms |
| コンパイル使用メモリ | 82,156 KB |
| 実行使用メモリ | 155,724 KB |
| 最終ジャッジ日時 | 2025-04-15 22:06:30 |
| 合計ジャッジ時間 | 3,573 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 |
ソースコード
import math
# Read input
A, B, C = map(int, input().split())
# Compute GCD of A, B, C
gcd_ab = math.gcd(A, B)
gcd_abc = math.gcd(gcd_ab, C)
if gcd_abc != 1:
print("INF")
else:
m = min(A, B, C)
max_limit = (A + B + C) * max(A, B, C)
dp = [False] * (max_limit + 1)
dp[0] = True # 0 can be formed with x=y=z=0
current_consecutive = 0
found = False
stop_point = max_limit # Initialize to max_limit in case loop completes without finding
for i in range(1, max_limit + 1):
can_form = False
if i >= A and dp[i - A]:
can_form = True
elif i >= B and dp[i - B]:
can_form = True
elif i >= C and dp[i - C]:
can_form = True
if can_form:
dp[i] = True
current_consecutive += 1
if current_consecutive == m:
stop_point = i
found = True
break
else:
current_consecutive = 0
if not found:
# This case should theoretically not occur as per problem constraints
print(0)
else:
start = stop_point - m + 1
# Count numbers from 1 to start-1 that cannot be formed
count = 0
for num in range(1, start):
if not dp[num]:
count += 1
print(count)
lam6er