結果
| 問題 | No.1352 Three Coins | 
| コンテスト | |
| ユーザー |  lam6er | 
| 提出日時 | 2025-04-15 22:08:31 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 184 ms / 2,000 ms | 
| コード長 | 1,338 bytes | 
| コンパイル時間 | 305 ms | 
| コンパイル使用メモリ | 82,008 KB | 
| 実行使用メモリ | 155,932 KB | 
| 最終ジャッジ日時 | 2025-04-15 22:09:24 | 
| 合計ジャッジ時間 | 3,515 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 34 | 
ソースコード
import math
# Read input
A, B, C = map(int, input().split())
# Compute GCD of A, B, C
gcd_ab = math.gcd(A, B)
gcd_abc = math.gcd(gcd_ab, C)
if gcd_abc != 1:
    print("INF")
else:
    m = min(A, B, C)
    max_limit = (A + B + C) * max(A, B, C)
    dp = [False] * (max_limit + 1)
    dp[0] = True  # 0 can be formed with x=y=z=0
    current_consecutive = 0
    found = False
    stop_point = max_limit  # Initialize to max_limit in case loop completes without finding
    for i in range(1, max_limit + 1):
        can_form = False
        if i >= A and dp[i - A]:
            can_form = True
        elif i >= B and dp[i - B]:
            can_form = True
        elif i >= C and dp[i - C]:
            can_form = True
        
        if can_form:
            dp[i] = True
            current_consecutive += 1
            if current_consecutive == m:
                stop_point = i
                found = True
                break
        else:
            current_consecutive = 0
    if not found:
        # This case should theoretically not occur as per problem constraints
        print(0)
    else:
        start = stop_point - m + 1
        # Count numbers from 1 to start-1 that cannot be formed
        count = 0
        for num in range(1, start):
            if not dp[num]:
                count += 1
        print(count)
            
            
            
        