結果
問題 |
No.1322 Totient Bound
|
ユーザー |
![]() |
提出日時 | 2025-04-15 22:35:22 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,805 bytes |
コンパイル時間 | 455 ms |
コンパイル使用メモリ | 82,152 KB |
実行使用メモリ | 65,644 KB |
最終ジャッジ日時 | 2025-04-15 22:37:23 |
合計ジャッジ時間 | 8,226 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 10 TLE * 1 -- * 25 |
ソースコード
def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def solve(N): if N == 0: return 1 # Only x=1 count = 0 stack = [(1, 1, 0)] # (current_x, current_phi, last_prime) while stack: x, phi, last_p = stack.pop() if x != 1: count += 1 K = N // phi p = last_p + 1 max_p = K + 1 while p <= max_p: if is_prime(p): if (p - 1) > K: p += 1 continue max_e = 0 current_contribution = 1 for e in range(1, 65): # e starts from 1, up to 2^64 if e == 1: current_contribution = (p - 1) else: current_contribution *= p if phi * current_contribution > N: break max_e = e if max_e >= 1: for e in range(1, max_e + 1): new_x = x * (p ** e) new_phi = phi * (p - 1) * (p ** (e - 1)) stack.append((new_x, new_phi, p)) p += 1 return count + 1 # +1 for x=1 # Read input and output the result N = int(input()) print(solve(N))