結果
| 問題 | No.3038 シャッフルの再現 |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 23:35:47 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,513 bytes |
| 記録 | |
| コンパイル時間 | 171 ms |
| コンパイル使用メモリ | 82,476 KB |
| 実行使用メモリ | 70,424 KB |
| 最終ジャッジ日時 | 2025-04-15 23:36:47 |
| 合計ジャッジ時間 | 2,452 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import math
import random
from collections import defaultdict
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def factorize(n):
if n == 0:
return {}
factors = factor(n)
res = defaultdict(int)
for p in factors:
res[p] += 1
return res
def generate_divisors(factors_dict):
factors = sorted(factors_dict.items())
divisors = [1]
for (p, exp) in factors:
temp = []
for d in divisors:
current = 1
for _ in range(exp + 1):
temp.append(d * current)
current *= p
divisors = temp
return sorted(divisors)
def fib_pair(n, mod):
if mod == 1:
return (0, 0)
def fast_doubling(n):
if n == 0:
return (0, 1)
a, b = fast_doubling(n >> 1)
c = a * ((2 * b - a) % mod) % mod
d = (a * a + b * b) % mod
if n & 1:
return (d, (c + d) % mod)
else:
return (c, d)
return fast_doubling(n)
def compute_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
a = 5
legendre = pow(a, (p - 1) // 2, p)
if legendre == 1 or legendre == 0:
m = p - 1
else:
m = 2 * (p + 1)
factors_dict = factorize(m)
divisors = generate_divisors(factors_dict)
for d in divisors:
if d == 0:
continue
f_d, f_d_plus_1 = fib_pair(d, p)
if f_d % p == 0 and f_d_plus_1 % p == 1:
return d
return m # Fallback, should not reach here
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
factors = []
for _ in range(N):
p = int(input[ptr])
k = int(input[ptr + 1])
ptr += 2
factors.append((p, k))
current_lcm = 1
for (p, k) in factors:
if p == 2:
pi_p = 3
elif p == 5:
pi_p = 20
else:
pi_p = compute_pisano_period(p)
pi_pk = pi_p * (p ** (k - 1))
g = math.gcd(current_lcm, pi_pk)
current_lcm = (current_lcm // g) * pi_pk
current_lcm %= MOD # To handle large numbers, mod here is safe since LCM properties
print(current_lcm % MOD)
if __name__ == "__main__":
main()
lam6er