結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-04-16 00:08:24 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 1,978 bytes |
コンパイル時間 | 552 ms |
コンパイル使用メモリ | 81,332 KB |
実行使用メモリ | 67,220 KB |
最終ジャッジ日時 | 2025-04-16 00:09:27 |
合計ジャッジ時間 | 2,530 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys from math import gcd MOD = 10**9 + 7 def factorize(n): factors = {} while n % 2 == 0: factors[2] = factors.get(2, 0) + 1 n = n // 2 i = 3 while i * i <= n: while n % i == 0: factors[i] = factors.get(i, 0) + 1 n = n // i i += 2 if n > 1: factors[n] = 1 return factors def generate_divisors(factors): divisors = [1] for p, exp in factors.items(): current_divisors = divisors.copy() new_divisors = [] for e in range(1, exp + 1): pe = p ** e for d in current_divisors: new_divisors.append(d * pe) divisors += new_divisors divisors = list(set(divisors)) divisors.sort() return divisors def fast_doubling(n, mod): if n == 0: return (0, 1) a, b = fast_doubling(n >> 1, mod) c = (a * (2 * b - a)) % mod d = (a * a + b * b) % mod if n & 1: return (d, (c + d) % mod) else: return (c, d) def compute_pisano_period(p): if p == 2: return 3 if p == 5: return 20 mod5 = p % 5 if mod5 in (1, 4): m = p - 1 else: m = 2 * (p + 1) factors = factorize(m) divisors = generate_divisors(factors) for d in divisors: fn, fn1 = fast_doubling(d, p) if fn % p == 0 and fn1 % p == 1: return d return m # This line is theoretically unreachable def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 periods = [] for _ in range(N): p = int(input[ptr]) ptr += 1 k = int(input[ptr]) ptr += 1 period_p = compute_pisano_period(p) period_pk = period_p * (p ** (k - 1)) periods.append(period_pk) current_lcm = 1 for p in periods: current_lcm = current_lcm * p // gcd(current_lcm, p) print(current_lcm % MOD) if __name__ == '__main__': main()