結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-04-16 00:10:35 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 2,155 bytes |
コンパイル時間 | 204 ms |
コンパイル使用メモリ | 81,772 KB |
実行使用メモリ | 66,964 KB |
最終ジャッジ日時 | 2025-04-16 00:11:49 |
合計ジャッジ時間 | 2,107 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import math MOD = 10**9 + 7 def factor(n): factors = {} while n % 2 == 0: factors[2] = factors.get(2, 0) + 1 n = n // 2 i = 3 while i * i <= n: while n % i == 0: factors[i] = factors.get(i, 0) + 1 n = n // i i += 2 if n > 1: factors[n] = 1 return factors def generate_divisors(factors): divisors = [1] for p, exp in factors.items(): temp = [] current_powers = [p**e for e in range(1, exp + 1)] for d in divisors: for power in current_powers: temp.append(d * power) divisors += temp divisors = list(set(divisors)) divisors.sort() return divisors def fast_doubling(n, mod): a, b = 0, 1 for bit in bin(n)[2:]: c = a * (2 * b - a) % mod d = (a * a + b * b) % mod if bit == '1': a, b = d, (c + d) % mod else: a, b = c, d return a % mod, b % mod def compute_pisano_prime(p): if p == 2: return 3 if p == 5: return 20 legendre = pow(5, (p - 1) // 2, p) if legendre == 1: m = p - 1 else: m = 2 * (p + 1) factors = factor(m) divisors = generate_divisors(factors) for d in divisors: f_d, f_next = fast_doubling(d, p) if f_d == 0 and f_next == 1 % p: return d return m def compute_pisano_prime_power(p, k): if p == 2: if k == 1: return 3 else: return 3 * (2 ** (k - 1)) elif p == 5: return 20 * (5 ** (k - 1)) else: period_p = compute_pisano_prime(p) return period_p * (p ** (k - 1)) def main(): input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 periods = [] for _ in range(N): p = int(input[idx]) k = int(input[idx + 1]) idx += 2 period = compute_pisano_prime_power(p, k) periods.append(period) lcm = 1 for num in periods: gcd = math.gcd(lcm, num) lcm = (lcm // gcd) * num print(lcm % MOD) if __name__ == "__main__": main()