結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-04-16 00:17:45 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 2,396 bytes |
コンパイル時間 | 204 ms |
コンパイル使用メモリ | 82,468 KB |
実行使用メモリ | 67,452 KB |
最終ジャッジ日時 | 2025-04-16 00:19:09 |
合計ジャッジ時間 | 2,488 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys from math import gcd from functools import reduce MOD = 10**9 + 7 def factor(n): factors = {} while n % 2 == 0: factors[2] = factors.get(2, 0) + 1 n = n // 2 i = 3 while i * i <= n: while n % i == 0: factors[i] = factors.get(i, 0) + 1 n = n // i i += 2 if n > 1: factors[n] = 1 return factors def generate_divisors(factors): divisors = [1] for p, exp in factors.items(): current_divisors = [] for d in divisors: current = 1 for _ in range(exp + 1): current_divisors.append(d * current) current *= p divisors = current_divisors divisors = list(set(divisors)) divisors.sort() return divisors def fib_pair(n, mod): if mod == 1: return (0, 0) def fib(n_val): if n_val == 0: return (0, 1) a, b = fib(n_val >> 1) c = (a * (2 * b - a)) % mod d = (a * a + b * b) % mod if n_val & 1: return (d, (c + d) % mod) else: return (c, d) return fib(n) def compute_pisano_period(p): if p == 2: return 3 if p == 5: return 20 legendre = pow(5, (p - 1) // 2, p) if legendre == 1: m = p - 1 else: m = 2 * (p + 1) factors = factor(m) divisors = generate_divisors(factors) for d in divisors: if d == 0: continue fib_d, fib_d_plus_1 = fib_pair(d, p) if fib_d % p == 0 and fib_d_plus_1 % p == 1: return d return m def compute_period_prime_power(p, k): if p == 2: if k == 1: return 3 elif k == 2: return 6 else: return 3 * (2 ** (k - 1)) elif p == 5: return 20 * (5 ** (k - 1)) else: pisano_p = compute_pisano_period(p) return pisano_p * (p ** (k - 1)) def main(): input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 periods = [] for _ in range(N): p = int(input[idx]) k = int(input[idx + 1]) idx += 2 period = compute_period_prime_power(p, k) periods.append(period) def lcm(a, b): return a * b // gcd(a, b) result = reduce(lcm, periods, 1) print(result % MOD) if __name__ == '__main__': main()