結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-04-16 01:02:44 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,175 bytes |
コンパイル時間 | 400 ms |
コンパイル使用メモリ | 81,816 KB |
実行使用メモリ | 106,072 KB |
最終ジャッジ日時 | 2025-04-16 01:05:07 |
合計ジャッジ時間 | 23,668 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys import math import random def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n - 1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def find_p_new_even(X): candidate = 3 while True: if is_prime(candidate) and X % candidate != 0: return X * candidate candidate += 2 def solve(): input = sys.stdin.read().split() T = int(input[0]) cases = list(map(int, input[1:T+1])) for X in cases: if X == 1: print(2) continue factors = factor(X) primes = list(factors.keys()) if X % 2 == 1: Y_new = X * 2 else: Y_new = find_p_new_even(X) min_Yi = float('inf') for p in primes: a = factors[p] exponent = a + 1 yi = X * (p ** exponent) if yi < min_Yi: min_Yi = yi answer = min(Y_new, min_Yi) if min_Yi != float('inf') else Y_new print(answer) if __name__ == '__main__': solve()