結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-04-16 01:11:51 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,762 bytes |
コンパイル時間 | 267 ms |
コンパイル使用メモリ | 82,056 KB |
実行使用メモリ | 99,004 KB |
最終ジャッジ日時 | 2025-04-16 01:13:50 |
合計ジャッジ時間 | 24,632 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 9 WA * 20 TLE * 8 |
ソースコード
import sys import random from math import gcd from collections import defaultdict def input(): return sys.stdin.read() def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return sorted(factors) def get_prime_exponents(factors): counts = defaultdict(int) for p in factors: counts[p] += 1 return counts def find_s(primes_set): for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]: if p not in primes_set: return p candidate = 101 while True: if candidate > 10**6: break if is_prime(candidate) and candidate not in primes_set: return candidate candidate += 2 candidate = 2 while True: if candidate not in primes_set: if is_prime(candidate): return candidate candidate += 1 def solve(): data = input().split() T = int(data[0]) cases = list(map(int, data[1:T+1])) for X in cases: if X == 1: print(2) continue factors = factor(X) prime_exponents = get_prime_exponents(factors) primes_set = set(prime_exponents.keys()) s = find_s(primes_set) Y_a = X * s min_power = None for p in prime_exponents: exponent = prime_exponents[p] current = p ** (exponent + 1) if min_power is None or current < min_power: min_power = current Y_b = X * min_power print(min(Y_a, Y_b)) if __name__ == "__main__": solve()