結果

問題 No.1611 Minimum Multiple with Double Divisors
ユーザー lam6er
提出日時 2025-04-16 01:13:09
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 2,364 bytes
コンパイル時間 569 ms
コンパイル使用メモリ 82,572 KB
実行使用メモリ 106,588 KB
最終ジャッジ日時 2025-04-16 01:15:08
合計ジャッジ時間 23,979 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 2
other AC * 1 WA * 10 TLE * 1 -- * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
import random

def is_prime(n):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def pollards_rho(n):
    if n % 2 == 0:
        return 2
    if n % 3 == 0:
        return 3
    if n % 5 == 0:
        return 5
    while True:
        c = random.randint(1, n - 1)
        f = lambda x: (pow(x, 2, n) + c) % n
        x, y, d = 2, 2, 1
        while d == 1:
            x = f(x)
            y = f(f(y))
            d = gcd(abs(x - y), n)
        if d != n:
            return d

def gcd(a, b):
    while b:
        a, b = b, a % b
    return a

def factor(n):
    factors = []
    def _factor(n):
        if n == 1:
            return
        if is_prime(n):
            factors.append(n)
            return
        d = pollards_rho(n)
        _factor(d)
        _factor(n // d)
    _factor(n)
    return factors

def factorize(n):
    if n == 1:
        return {}
    factors = factor(n)
    res = {}
    for p in factors:
        res[p] = res.get(p, 0) + 1
    return res

def find_min_p(primes_set):
    candidate = 2
    while True:
        if candidate not in primes_set:
            if is_prime(candidate):
                return candidate
        if candidate == 2:
            candidate = 3
        else:
            candidate += 2

def main():
    input = sys.stdin.read().split()
    T = int(input[0])
    cases = list(map(int, input[1:T+1]))
    for X in cases:
        if X == 1:
            print(2)
            continue
        factors = factorize(X)
        primes = list(factors.keys())
        primes_set = set(primes)
        min_p = find_min_p(primes_set)
        Y1 = X * min_p
        min_Y = Y1
        for p in primes:
            exponent = factors[p]
            new_Y = X * (p ** (exponent + 1))
            if new_Y < min_Y:
                min_Y = new_Y
        print(min_Y)

if __name__ == "__main__":
    main()
0