結果

問題 No.1796 木上のクーロン
ユーザー lam6er
提出日時 2025-04-16 16:03:29
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 1,782 bytes
コンパイル時間 416 ms
コンパイル使用メモリ 82,260 KB
実行使用メモリ 174,936 KB
最終ジャッジ日時 2025-04-16 16:10:00
合計ジャッジ時間 14,303 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 17 TLE * 1 -- * 16
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from collections import deque

MOD = 998244353

def main():
    input = sys.stdin.read().split()
    ptr = 0
    N = int(input[ptr])
    ptr += 1
    Q = list(map(int, input[ptr:ptr+N]))
    ptr += N
    edges = [[] for _ in range(N+1)]
    for _ in range(N-1):
        u = int(input[ptr])
        v = int(input[ptr+1])
        ptr += 2
        edges[u].append(v)
        edges[v].append(u)
    
    # Precompute factorial and k0 = (N!)^2 mod MOD
    fact = [1] * (N+1)
    for i in range(1, N+1):
        fact[i] = fact[i-1] * i % MOD
    k0 = fact[N] * fact[N] % MOD
    
    # Precompute inv_sq[d] = 1/(d^2) mod MOD for d from 1 to N+1
    max_d = N
    inv = [1] * (max_d + 2)
    inv[1] = 1
    for i in range(2, max_d + 2):
        inv[i] = MOD - MOD // i * inv[MOD % i] % MOD
    inv_sq = [1] * (max_d + 2)
    for d in range(1, max_d + 2):
        inv_sq[d] = inv[d] * inv[d] % MOD
    
    # For each vertex p, compute sum of Q_i / (d(p,i)+1)^2
    E = [0] * (N+1)  # 1-based
    
    # Since BFS for each node is O(N^2), which is not feasible, this approach will not work for large N.
    # The following code is a placeholder to illustrate the intended logic but will not pass due to time constraints.
    for p in range(1, N+1):
        dist = [-1] * (N+1)
        q = deque()
        q.append(p)
        dist[p] = 0
        while q:
            u = q.popleft()
            for v in edges[u]:
                if dist[v] == -1:
                    dist[v] = dist[u] + 1
                    q.append(v)
        total = 0
        for i in range(1, N+1):
            d = dist[i]
            total = (total + Q[i-1] * inv_sq[d+1]) % MOD
        E[p] = total * k0 % MOD
    
    for p in range(1, N+1):
        print(E[p])
    
if __name__ == '__main__':
    main()
0