結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-04-16 16:21:30 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,513 bytes |
コンパイル時間 | 196 ms |
コンパイル使用メモリ | 81,996 KB |
実行使用メモリ | 70,100 KB |
最終ジャッジ日時 | 2025-04-16 16:22:46 |
合計ジャッジ時間 | 2,458 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import math import random from collections import defaultdict MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) factors.sort() return factors def factorize(n): if n == 0: return {} factors = factor(n) res = defaultdict(int) for p in factors: res[p] += 1 return res def generate_divisors(factors_dict): factors = sorted(factors_dict.items()) divisors = [1] for (p, exp) in factors: temp = [] for d in divisors: current = 1 for _ in range(exp + 1): temp.append(d * current) current *= p divisors = temp return sorted(divisors) def fib_pair(n, mod): if mod == 1: return (0, 0) def fast_doubling(n): if n == 0: return (0, 1) a, b = fast_doubling(n >> 1) c = a * ((2 * b - a) % mod) % mod d = (a * a + b * b) % mod if n & 1: return (d, (c + d) % mod) else: return (c, d) return fast_doubling(n) def compute_pisano_period(p): if p == 2: return 3 if p == 5: return 20 a = 5 legendre = pow(a, (p - 1) // 2, p) if legendre == 1 or legendre == 0: m = p - 1 else: m = 2 * (p + 1) factors_dict = factorize(m) divisors = generate_divisors(factors_dict) for d in divisors: if d == 0: continue f_d, f_d_plus_1 = fib_pair(d, p) if f_d % p == 0 and f_d_plus_1 % p == 1: return d return m # Fallback, should not reach here def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 factors = [] for _ in range(N): p = int(input[ptr]) k = int(input[ptr + 1]) ptr += 2 factors.append((p, k)) current_lcm = 1 for (p, k) in factors: if p == 2: pi_p = 3 elif p == 5: pi_p = 20 else: pi_p = compute_pisano_period(p) pi_pk = pi_p * (p ** (k - 1)) g = math.gcd(current_lcm, pi_pk) current_lcm = (current_lcm // g) * pi_pk current_lcm %= MOD # To handle large numbers, mod here is safe since LCM properties print(current_lcm % MOD) if __name__ == "__main__": main()