結果

問題 No.3038 シャッフルの再現
ユーザー lam6er
提出日時 2025-04-16 16:22:11
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 2,379 bytes
コンパイル時間 399 ms
コンパイル使用メモリ 81,700 KB
実行使用メモリ 67,424 KB
最終ジャッジ日時 2025-04-16 16:23:18
合計ジャッジ時間 2,277 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 1
other RE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from collections import defaultdict

MOD = 10**9 + 7

def factor(n):
    factors = defaultdict(int)
    while n % 2 == 0:
        factors[2] += 1
        n = n // 2
    i = 3
    while i * i <= n:
        while n % i == 0:
            factors[i] += 1
            n = n // i
        i += 2
    if n > 1:
        factors[n] += 1
    return factors

def generate_divisors(factors):
    divisors = [1]
    for prime in sorted(factors.keys()):
        exponents = factors[prime]
        current_pows = [prime**e for e in range(exponents + 1)]
        new_divisors = []
        for d in divisors:
            for cp in current_pows:
                new_divisors.append(d * cp)
        divisors = sorted(list(set(new_divisors)))
    return divisors

def fast_doubling(n, mod):
    if n == 0:
        return (0, 1)
    a, b = fast_doubling(n >> 1, mod)
    c = (a * (2 * b - a)) % mod
    d = (a * a + b * b) % mod
    if n & 1:
        return (d, (c + d) % mod)
    else:
        return (c, d)

def compute_pi_p(p):
    if p == 2:
        return 3
    if p == 5:
        return 20
    mod5 = p % 5
    if mod5 in (1, 4):
        m = p - 1
    else:
        m = 2 * (p + 1)
    factors = factor(m)
    divisors = generate_divisors(factors)
    for d in divisors:
        if d == 0:
            continue
        f_d, f_next = fast_doubling(d, p)
        if f_d % p == 0 and f_next % p == 1:
            return d
    return m  # Fallback, though it should not reach here

def main():
    input = sys.stdin.read().split()
    ptr = 0
    N = int(input[ptr])
    ptr += 1
    lcm_factors = defaultdict(int)
    for _ in range(N):
        p = int(input[ptr])
        k = int(input[ptr + 1])
        ptr += 2
        if p == 2:
            period = 3 * (2 ** (k - 1))
            period_factors = factor(period)
        elif p == 5:
            period = 4 * (5 ** k)
            period_factors = factor(period)
        else:
            pi_p = compute_pi_p(p)
            factors_pi_p = factor(pi_p)
            factors_pi_p[p] += (k - 1)
            period_factors = factors_pi_p
        for prime, exp in period_factors.items():
            if exp > lcm_factors[prime]:
                lcm_factors[prime] = exp
    result = 1
    for prime, exp in lcm_factors.items():
        result = (result * pow(prime, exp, MOD)) % MOD
    print(result)

if __name__ == '__main__':
    main()
0