結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-04-16 16:22:30 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,493 bytes |
コンパイル時間 | 409 ms |
コンパイル使用メモリ | 82,288 KB |
実行使用メモリ | 70,268 KB |
最終ジャッジ日時 | 2025-04-16 16:23:56 |
合計ジャッジ時間 | 2,526 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import random from math import gcd MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n - 1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = gcd(abs(x - y), n) if d != n: return d def factor(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def generate_divisors(factors_dict): divisors = [1] for p, exp in factors_dict.items(): temp = [] current_power = 1 for _ in range(exp + 1): for d in divisors: temp.append(d * current_power) current_power *= p divisors = list(set(temp)) divisors.sort() return divisors def fib_pair(n, mod): if n == 0: return (0, 1) a, b = fib_pair(n >> 1, mod) c = (a * ((2 * b - a) % mod)) % mod d = (a * a + b * b) % mod if n & 1: return (d, (c + d) % mod) else: return (c, d) def compute_pisano_prime(p): if p == 2: return {3: 1} if p == 5: return {2: 2, 5: 1} mod5 = p % 5 if mod5 in (1, 4): m = p - 1 else: m = 2 * (p + 1) factors_m = factor(m) divisors = generate_divisors(factors_m) per_p = m for d in divisors: a, b = fib_pair(d, p) if a == 0 and b == 1 % p: per_p = d break per_p_factors = factor(per_p) return per_p_factors def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 lcm_factors = {} for _ in range(N): p = int(input[ptr]) ptr += 1 k = int(input[ptr]) ptr += 1 if p == 2: if k == 1: current_factors = {3: 1} else: current_factors = {2: (k - 1), 3: 1} elif p == 5: current_factors = {2: 2, 5: k} else: per_p_factors = compute_pisano_prime(p) current_factors = per_p_factors.copy() current_power = k - 1 if current_power > 0: current_factors[p] = current_factors.get(p, 0) + current_power for q in current_factors: exp = current_factors[q] if exp == 0: continue if q not in lcm_factors or exp > lcm_factors[q]: lcm_factors[q] = exp result = 1 for q in lcm_factors: result = (result * pow(q, lcm_factors[q], MOD)) % MOD print(result) if __name__ == '__main__': main()