結果
| 問題 | No.3038 シャッフルの再現 |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:22:30 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,493 bytes |
| 記録 | |
| コンパイル時間 | 409 ms |
| コンパイル使用メモリ | 82,288 KB |
| 実行使用メモリ | 70,268 KB |
| 最終ジャッジ日時 | 2025-04-16 16:23:56 |
| 合計ジャッジ時間 | 2,526 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import random
from math import gcd
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n - 1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = {}
def _factor(n):
if n == 1:
return
if is_prime(n):
factors[n] = factors.get(n, 0) + 1
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def generate_divisors(factors_dict):
divisors = [1]
for p, exp in factors_dict.items():
temp = []
current_power = 1
for _ in range(exp + 1):
for d in divisors:
temp.append(d * current_power)
current_power *= p
divisors = list(set(temp))
divisors.sort()
return divisors
def fib_pair(n, mod):
if n == 0:
return (0, 1)
a, b = fib_pair(n >> 1, mod)
c = (a * ((2 * b - a) % mod)) % mod
d = (a * a + b * b) % mod
if n & 1:
return (d, (c + d) % mod)
else:
return (c, d)
def compute_pisano_prime(p):
if p == 2:
return {3: 1}
if p == 5:
return {2: 2, 5: 1}
mod5 = p % 5
if mod5 in (1, 4):
m = p - 1
else:
m = 2 * (p + 1)
factors_m = factor(m)
divisors = generate_divisors(factors_m)
per_p = m
for d in divisors:
a, b = fib_pair(d, p)
if a == 0 and b == 1 % p:
per_p = d
break
per_p_factors = factor(per_p)
return per_p_factors
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
lcm_factors = {}
for _ in range(N):
p = int(input[ptr])
ptr += 1
k = int(input[ptr])
ptr += 1
if p == 2:
if k == 1:
current_factors = {3: 1}
else:
current_factors = {2: (k - 1), 3: 1}
elif p == 5:
current_factors = {2: 2, 5: k}
else:
per_p_factors = compute_pisano_prime(p)
current_factors = per_p_factors.copy()
current_power = k - 1
if current_power > 0:
current_factors[p] = current_factors.get(p, 0) + current_power
for q in current_factors:
exp = current_factors[q]
if exp == 0:
continue
if q not in lcm_factors or exp > lcm_factors[q]:
lcm_factors[q] = exp
result = 1
for q in lcm_factors:
result = (result * pow(q, lcm_factors[q], MOD)) % MOD
print(result)
if __name__ == '__main__':
main()
lam6er