結果
| 問題 |
No.3114 0→1
|
| コンテスト | |
| ユーザー |
aaaaaaaaaaa
|
| 提出日時 | 2025-04-18 23:04:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 4,087 bytes |
| コンパイル時間 | 648 ms |
| コンパイル使用メモリ | 74,176 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-04-18 23:04:25 |
| 合計ジャッジ時間 | 1,400 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);
int N;
std::cin >> N;
std::string S;
std::cin >> S;
// B[k] represents the balance (count of 1s minus count of 0s) of the prefix S_new[0...k]
// B[-1] is defined as 0.
// We need B[j] - B[i-1] >= 0 for all 0 <= i <= j < N with j-i+1 >= 2.
// This is equivalent to B[k] >= B[m] for all -1 <= m <= k-2 and 0 <= k < N.
// So, for k = 1, ..., N-1, we need B[k] >= max(B[-1], B[0], ..., B[k-2]).
long long achieved_b_prev = 0; // Represents B_{i-1} in the iteration for index i
long long changes = 0;
// This variable will store max(B[-1], B[0], ..., B[i-2]) as we iterate through index i.
// It is needed to check the condition for B[i].
long long max_b_up_to_prev_minus_2 = 0; // max(B[-1]) = 0, needed for i=1 check
for (int i = 0; i < N; ++i) {
char current_char = S[i];
int char_val = (current_char == '1') ? 1 : -1;
// Calculate the required minimum value for B[i]
long long required_b_i;
if (i == 0) {
// For substrings of length >= 2 ending at index 0, there are none.
// The condition B[k] >= max(B[-1], ..., B[k-2]) applies for k >= 1.
// B[0] has no constraint relative to previous terms via this rule.
// However, the general form count(0) <= count(1) for length >= 2 still implies constraints.
// The specific condition is that for any substring Y, count(0 in Y) <= count(1 in Y).
// For k=0, only substring ending here is S[0] (length 1), no condition.
required_b_i = -2e18; // Effectively no lower bound for B[0] from this rule
} else if (i == 1) {
// For substrings ending at index 1 of length >= 2, only S[0...1].
// Condition: B[1] - B[-1] >= 0. So B[1] >= B[-1] = 0.
required_b_i = 0;
} else {
// For i >= 2, substrings ending at i of length >= 2 are S[0...i], S[1...i], ..., S[i-2...i].
// Conditions: B[i] >= B[-1], B[i] >= B[0], ..., B[i] >= B[i-2].
// So B[i] >= max(B[-1], B[0], ..., B[i-2]).
required_b_i = max_b_up_to_prev_minus_2;
}
// Calculate the potential value of B[i] if we keep S[i] as its original value (or if it's '1')
long long potential_b_i = achieved_b_prev + char_val;
long long achieved_b_i;
if (potential_b_i >= required_b_i) {
// If keeping the original value satisfies the condition, do so.
achieved_b_i = potential_b_i;
} else {
// If keeping the original '0' makes B[i] too low, we must change S[i] from '0' to '1'.
// This increases the value by 2 compared to decreasing by 1.
// The value becomes B_{i-1} + 1. This is only possible if S[i] was '0'.
// If S[i] was '1', potential_b_i = B_{i-1} + 1. If this is < required, previous choices were wrong or impossible?
// The problem constraints and form suggest a solution exists.
// When potential_b_i < required_b_i, it must be that S[i] is '0'.
achieved_b_i = achieved_b_prev + 1; // Change '0' to '1'
changes++;
}
// Update max_b_up_to_prev_minus_2 for the next iteration (i+1).
// The next iteration needs max(B[-1], ..., B[i-1]).
// This is max(current max_b_up_to_prev_minus_2, B[i-1]).
// B[i-1] is the achieved_b_prev from *this* iteration's perspective.
if (i >= 1) { // We need B_{i-1} to update max for next step (i+1).
// max(B_{-1}..i-2, B_{i-1})
max_b_up_to_prev_minus_2 = std::max(max_b_up_to_prev_minus_2, achieved_b_prev);
}
// For i=0, achieved_b_prev is B[-1]=0. max_b_up_to_prev_minus_2 remains 0 for i=1.
// Update achieved_b_prev for the next iteration.
achieved_b_prev = achieved_b_i;
}
std::cout << changes << std::endl;
return 0;
}
aaaaaaaaaaa