結果
| 問題 | No.3109 Swap members |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-18 23:58:00 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,852 bytes |
| 記録 | |
| コンパイル時間 | 745 ms |
| コンパイル使用メモリ | 11,904 KB |
| 実行使用メモリ | 39,104 KB |
| 最終ジャッジ日時 | 2025-04-18 23:58:20 |
| 合計ジャッジ時間 | 17,695 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 33 WA * 19 |
ソースコード
def can_rearrange(n, k, s, t):
"""
Determine if it's possible to rearrange the array s to match array t
using only swaps of elements at positions i and i+k.
Args:
n: Number of elements
k: Swap distance
s: Initial arrangement
t: Target arrangement
Returns:
True if possible, False otherwise
"""
# Check if t is a permutation of s
if sorted(s) != sorted(t):
return False
# The key insight: this operation creates a permutation that can be broken down
# into cycles where elements move by multiples of gcd(k, n)
# Create a mapping from username to position in the target array
target_positions = {name: i for i, name in enumerate(t)}
# Mark visited positions
visited = [False] * n
# Check each cycle
for i in range(n):
if visited[i]:
continue
# Start a new cycle
cycle_positions = set()
pos = i
# Trace the cycle
while not visited[pos]:
visited[pos] = True
cycle_positions.add(pos)
# Find where the current element should go
target_pos = target_positions[s[pos]]
pos = target_pos
# For a cycle to be achievable, all positions in the cycle must be
# congruent modulo gcd(k, n)
if len(set(pos % gcd(k, n) for pos in cycle_positions)) > 1:
return False
return True
def gcd(a, b):
"""Calculate the greatest common divisor of a and b."""
while b:
a, b = b, a % b
return a
# Read input
n, k = map(int, input().split())
s = [input() for _ in range(n)]
t = [input() for _ in range(n)]
# Solve the problem
result = can_rearrange(n, k, s, t)
# Output the result
print("Yes" if result else "No")