結果
| 問題 | 
                            No.3109 Swap members
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2025-04-18 23:58:00 | 
| 言語 | Python3  (3.13.1 + numpy 2.2.1 + scipy 1.14.1)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,852 bytes | 
| コンパイル時間 | 745 ms | 
| コンパイル使用メモリ | 11,904 KB | 
| 実行使用メモリ | 39,104 KB | 
| 最終ジャッジ日時 | 2025-04-18 23:58:20 | 
| 合計ジャッジ時間 | 17,695 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 33 WA * 19 | 
ソースコード
def can_rearrange(n, k, s, t):
    """
    Determine if it's possible to rearrange the array s to match array t
    using only swaps of elements at positions i and i+k.
    
    Args:
        n: Number of elements
        k: Swap distance
        s: Initial arrangement
        t: Target arrangement
    
    Returns:
        True if possible, False otherwise
    """
    # Check if t is a permutation of s
    if sorted(s) != sorted(t):
        return False
    
    # The key insight: this operation creates a permutation that can be broken down
    # into cycles where elements move by multiples of gcd(k, n)
    
    # Create a mapping from username to position in the target array
    target_positions = {name: i for i, name in enumerate(t)}
    
    # Mark visited positions
    visited = [False] * n
    
    # Check each cycle
    for i in range(n):
        if visited[i]:
            continue
        
        # Start a new cycle
        cycle_positions = set()
        pos = i
        
        # Trace the cycle
        while not visited[pos]:
            visited[pos] = True
            cycle_positions.add(pos)
            
            # Find where the current element should go
            target_pos = target_positions[s[pos]]
            pos = target_pos
        
        # For a cycle to be achievable, all positions in the cycle must be
        # congruent modulo gcd(k, n)
        if len(set(pos % gcd(k, n) for pos in cycle_positions)) > 1:
            return False
    
    return True
def gcd(a, b):
    """Calculate the greatest common divisor of a and b."""
    while b:
        a, b = b, a % b
    return a
# Read input
n, k = map(int, input().split())
s = [input() for _ in range(n)]
t = [input() for _ in range(n)]
# Solve the problem
result = can_rearrange(n, k, s, t)
# Output the result
print("Yes" if result else "No")