結果
問題 |
No.3114 0→1
|
ユーザー |
|
提出日時 | 2025-04-19 00:14:54 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,261 bytes |
コンパイル時間 | 544 ms |
コンパイル使用メモリ | 12,032 KB |
実行使用メモリ | 22,336 KB |
最終ジャッジ日時 | 2025-04-19 00:14:58 |
合計ジャッジ時間 | 3,418 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 WA * 2 |
other | WA * 30 |
ソースコード
def min_operations(n, s): # For each position, track the excess of 0s over 1s # in the suffix starting at that position suffix_balance = [0] * (n + 1) # Calculate the suffix balance for i in range(n - 1, -1, -1): if s[i] == '0': suffix_balance[i] = suffix_balance[i + 1] + 1 else: # s[i] == '1' suffix_balance[i] = suffix_balance[i + 1] - 1 # Initialize an array to track the minimum operations needed # to make each suffix a good string min_ops = [0] * (n + 1) # Process the string from right to left for i in range(n - 1, -1, -1): if s[i] == '0': # If adding a 0 creates an imbalance, we need to convert it excess = suffix_balance[i] if excess > 0: # We need to convert this 0 to 1 min_ops[i] = min_ops[i + 1] + 1 else: # We can keep this 0 min_ops[i] = min_ops[i + 1] else: # s[i] == '1' # Adding a 1 always helps the balance min_ops[i] = min_ops[i + 1] return min_ops[0] def main(): n = int(input()) s = input().strip() print(min_operations(n, s)) if __name__ == "__main__": main()