結果
| 問題 |
No.3115 One Power One Kill
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 11:53:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,518 bytes |
| コンパイル時間 | 1,055 ms |
| コンパイル使用メモリ | 86,216 KB |
| 実行使用メモリ | 26,252 KB |
| 平均クエリ数 | 3.00 |
| 最終ジャッジ日時 | 2025-04-19 11:53:51 |
| 合計ジャッジ時間 | 4,467 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 20 |
ソースコード
#include <iostream>
#include <cmath>
#include <algorithm>
const int MOD = 1e9 + 7;
// Function to compute (base^exp) % mod using binary exponentiation
long long modExp(long long base, long long exp, long long mod) {
long long result = 1;
while (exp > 0) {
if (exp % 2 == 1) {
result = (result * base) % mod;
}
base = (base * base) % mod;
exp /= 2;
}
return result;
}
int main() {
// Step 1: Choose A and B (let's start with some reasonable values)
int A = 100;
int B = 100;
// Output A and B
std::cout << A << " " << B << std::endl;
std::flush(std::cout); // Ensure the output is flushed
// Step 2: Calculate Y = A^B % (10^9 + 7)
long long Y = modExp(A, B, MOD);
// Step 3: Read the value of K from the judge
int K;
std::cin >> K;
// Step 4: Now we need to guess X'. Since we don't know X, let's make a reasonable guess
// A simple first guess could be to assume X' = K for simplicity
int X_prime_guess = K;
// Output the guess for X'
std::cout << X_prime_guess << std::endl;
std::flush(std::cout); // Ensure the output is flushed
// Step 5: Read the result from the judge (ret = 1 if correct, 0 if incorrect)
int ret;
std::cin >> ret;
// If ret == 1, the guess is correct; otherwise, it's incorrect
if (ret == 1) {
std::cout << "Correct guess!" << std::endl;
} else {
std::cout << "Incorrect guess!" << std::endl;
}
return 0;
}