結果
| 問題 |
No.2263 Perms
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2025-04-24 11:44:57 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,109 bytes |
| コンパイル時間 | 376 ms |
| コンパイル使用メモリ | 82,204 KB |
| 実行使用メモリ | 82,932 KB |
| 最終ジャッジ日時 | 2025-04-24 11:45:06 |
| 合計ジャッジ時間 | 8,831 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 37 WA * 2 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 62)
# md = 10**9+7
md = 998244353
from typing import NamedTuple, Optional, List, cast
class MFGraph:
class Edge(NamedTuple):
src: int
dst: int
cap: int
flow: int
class _Edge:
def __init__(self, dst: int, cap: int) -> None:
self.dst = dst
self.cap = cap
self.rev: Optional[MFGraph._Edge] = None
def __init__(self, n: int) -> None:
self._n = n+2
self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n+2)]
self._edges: List[MFGraph._Edge] = []
self._lower_sum = 0
def add_edge(self, src: int, dst: int, cap: int) -> int:
assert 0 <= src < self._n
assert 0 <= dst < self._n
assert 0 <= cap
m = len(self._edges)
e = MFGraph._Edge(dst, cap)
re = MFGraph._Edge(src, 0)
e.rev = re
re.rev = e
self._g[src].append(e)
self._g[dst].append(re)
self._edges.append(e)
return m
# cap's range [l,r]
def add_edge_lr(self, src: int, dst: int, l: int, r: int) -> int:
assert 0 <= src < self._n
assert 0 <= dst < self._n
assert 0 <= l <= r
if r-l: self.add_edge(src, dst, r-l)
self.add_edge(src, self._n-1, l)
self.add_edge(self._n-2, dst, l)
self._lower_sum += l
def add_undir_edge(self, src: int, dst: int, cap: int) -> int:
assert 0 <= src < self._n
assert 0 <= dst < self._n
assert 0 <= cap
m = len(self._edges)
e = MFGraph._Edge(dst, cap)
re = MFGraph._Edge(src, cap)
e.rev = re
re.rev = e
self._g[src].append(e)
self._g[dst].append(re)
self._edges.append(e)
return m
def get_edge(self, i: int) -> Edge:
assert 0 <= i < len(self._edges)
e = self._edges[i]
re = cast(MFGraph._Edge, e.rev)
return MFGraph.Edge(
re.dst,
e.dst,
e.cap+re.cap,
re.cap
)
def edges(self) -> List[Edge]:
return [self.get_edge(i) for i in range(len(self._edges))]
def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
assert 0 <= i < len(self._edges)
assert 0 <= new_flow <= new_cap
e = self._edges[i]
e.cap = new_cap-new_flow
assert e.rev is not None
e.rev.cap = new_flow
def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
assert 0 <= s < self._n
assert 0 <= t < self._n
assert s != t
if flow_limit is None:
flow_limit = cast(int, sum(e.cap for e in self._g[s]))
current_edge = [0]*self._n
level = [0]*self._n
def fill(arr: List[int], value: int) -> None:
for i in range(len(arr)):
arr[i] = value
def bfs() -> bool:
fill(level, self._n)
queue = []
q_front = 0
queue.append(s)
level[s] = 0
while q_front < len(queue):
v = queue[q_front]
q_front += 1
next_level = level[v]+1
for e in self._g[v]:
if e.cap == 0 or level[e.dst] <= next_level:
continue
level[e.dst] = next_level
if e.dst == t:
return True
queue.append(e.dst)
return False
def dfs(lim: int) -> int:
stack = []
edge_stack: List[MFGraph._Edge] = []
stack.append(t)
while stack:
v = stack[-1]
if v == s:
flow = min(lim, min(e.cap for e in edge_stack))
for e in edge_stack:
e.cap -= flow
assert e.rev is not None
e.rev.cap += flow
return flow
next_level = level[v]-1
while current_edge[v] < len(self._g[v]):
e = self._g[v][current_edge[v]]
re = cast(MFGraph._Edge, e.rev)
if level[e.dst] != next_level or re.cap == 0:
current_edge[v] += 1
continue
stack.append(e.dst)
edge_stack.append(re)
break
else:
stack.pop()
if edge_stack:
edge_stack.pop()
level[v] = self._n
return 0
flow = 0
while flow < flow_limit:
if not bfs():
break
fill(current_edge, 0)
while flow < flow_limit:
f = dfs(flow_limit-flow)
flow += f
if f == 0:
break
return flow
def flow_lr(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
assert 0 <= s < self._n
assert 0 <= t < self._n
assert s != t
if flow_limit:
flow_limit -= self._lower_sum
if flow_limit < 0: return -1
f = self.flow(self._n-2, self._n-1)*2
f += self.flow(self._n-2, t)
f += self.flow(s, self._n-1)
if f < self._lower_sum*2: return -1
f = self.flow(s, t, flow_limit)
return f+self._lower_sum
def min_cut(self, s: int) -> List[bool]:
visited = [False]*self._n
stack = [s]
visited[s] = True
while stack:
v = stack.pop()
for e in self._g[v]:
if e.cap > 0 and not visited[e.dst]:
visited[e.dst] = True
stack.append(e.dst)
return visited
n, m = LI()
aa = LLI(n)
s = sum(aa[0])
for r in aa:
if sum(r) != s:
print(-1)
exit()
for c in zip(*aa):
if sum(c) != s:
print(-1)
exit()
s = n*2
t = s+1
for _ in range(m):
mf = MFGraph(t+1)
for i in range(n):
mf.add_edge(s, i, 1)
mf.add_edge(i+n, t, 1)
for j, a in enumerate(aa[i]):
if a == 0: continue
mf.add_edge(i, j+n, a)
mf.flow(s, t, n)
ans = [0]*n
for i, j, c, f in mf.edges():
if i < n and f:
ans[i] = j+1-n
aa[i][j-n] -= 1
print(*ans)
mkawa2