結果
問題 |
No.3138 Minimum Bracket Subsequence
|
ユーザー |
👑 ![]() |
提出日時 | 2025-04-27 20:01:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,430 bytes |
コンパイル時間 | 4,010 ms |
コンパイル使用メモリ | 239,332 KB |
実行使用メモリ | 34,168 KB |
最終ジャッジ日時 | 2025-04-27 20:01:17 |
合計ジャッジ時間 | 8,040 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 16 TLE * 1 -- * 19 |
ソースコード
#line 1 "e.cpp" #include <bits/stdc++.h> using namespace std; using ll=long long; const ll ILL=2167167167167167167; const int INF=2100000000; #define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) #define all(p) p.begin(),p.end() template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>; template<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;} template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;} template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());} template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;} template<class T> void vec_out(vector<T> &p,int ty=0){ if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";} else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}} template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;} int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} template<class T> T square(T a){return a * a;} #line 3 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp" #include <atcoder/convolution> #line 4 "/Users/Shared/po167_library/fps/FPS_extend.hpp" namespace po167{ // in : DFT(v) (len(v) = z) // out : DFT(v) (len(v) = 2 * z) template<class T> void FPS_extend(std::vector<T> &v){ int z = v.size(); T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z)); auto cp = v; atcoder::internal::butterfly_inv(cp); T tmp = (T)(1) / (T)(z); for (int i = 0; i < z; i++){ cp[i] *= tmp; tmp *= e; } atcoder::internal::butterfly(cp); for (int i = 0; i < z; i++) v.push_back(cp[i]); }; } #line 3 "/Users/Shared/po167_library/fps/FPS_pick_even_odd.hpp" namespace po167{ // s.t |v| = 2 ^ s (no assert) template<class T> void FPS_pick_even_odd(std::vector<T> &v, int odd){ int z = v.size() / 2; T half = (T)(1) / (T)(2); if (odd == 0){ for (int i = 0; i < z; i++){ v[i] = (v[i * 2] + v[i * 2 + 1]) * half; } v.resize(z); } else { T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z)); T ie = T(1) / e; std::vector<T> es = {half}; while ((int)es.size() != z){ std::vector<T> n_es((int)es.size() * 2); for (int i = 0; i < (int)es.size(); i++){ n_es[i * 2] = (es[i]); n_es[i * 2 + 1] = (es[i] * ie); } ie *= ie; std::swap(n_es, es); } for (int i = 0; i < z; i ++){ v[i] = (v[i * 2] - v[i * 2 + 1]) * es[i]; } v.resize(z); } } } #line 7 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp" namespace po167{ // return [x^k] P(x) / Q(x) template<class T> T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q){ assert(!Q.empty() && Q[0] != 0); int z = 1; while (z < (int)std::max(P.size(), Q.size())) z *= 2; P.resize(z * 2, 0); Q.resize(z * 2, 0); atcoder::internal::butterfly(P); atcoder::internal::butterfly(Q); // fast while (k){ // Q(-x) std::vector<T> Q_n(z * 2); for (int i = 0; i < z; i++){ Q_n[i * 2] = Q[i * 2 + 1]; Q_n[i * 2 + 1] = Q[i * 2]; } for (int i = 0; i < z * 2; i++){ P[i] *= Q_n[i]; Q[i] *= Q_n[i]; } FPS_pick_even_odd(P, k & 1); FPS_pick_even_odd(Q, 0); k /= 2; if (k == 0) break; FPS_extend(P); FPS_extend(Q); } T SP = 0, SQ = 0; for (int i = 0; i < z; i++) SP += P[i], SQ += Q[i]; return SP / SQ; // simple /* while (k){ auto n_Q = Q; for (int i = 0; i < int(Q.size()); i++){ if (i & 1) n_Q[i] *= -1; } auto n_P = atcoder::convolution(P, n_Q); n_Q = atcoder::convolution(Q, n_Q); for (int i = 0; i < int(Q.size()); i++){ Q[i] = n_Q[i * 2]; } P.clear(); for (int i = (k & 1); i < int(n_P.size()); i += 2){ P.push_back(n_P[i]); } k >>= 1; } return P[0] / Q[0]; */ } template<class T> // 0 = a[i] * c[0] + a[i - 1] * c[1] + a[i - 2] * c[2] + ... + a[i - d] * c[d] // a.size() + 1 == c.size() // c[0] = - 1 ? // return a[k] T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c){ int d = a.size(); assert(d + 1 == int(c.size())); std::vector<T> P = atcoder::convolution(a, c); P.resize(d); return Boston_Mori(k, P, c); } }; #line 2 "/Users/Shared/po167_library/math/Binomial.hpp" #line 5 "/Users/Shared/po167_library/math/Binomial.hpp" namespace po167{ template<class T> struct Binomial{ std::vector<T> fact_vec, fact_inv_vec; void extend(int m = -1){ int n = fact_vec.size(); if (m == -1) m = n * 2; if (n >= m) return; fact_vec.resize(m); fact_inv_vec.resize(m); for (int i = n; i < m; i++){ fact_vec[i] = fact_vec[i - 1] * T(i); } fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1]; for (int i = m - 1; i > n; i--){ fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i); } } Binomial(int MAX = 0){ fact_vec.resize(1, T(1)); fact_inv_vec.resize(1, T(1)); extend(MAX + 1); } T fact(int i){ if (i < 0) return 0; while (int(fact_vec.size()) <= i) extend(); return fact_vec[i]; } T invfact(int i){ if (i < 0) return 0; while (int(fact_inv_vec.size()) <= i) extend(); return fact_inv_vec[i]; } T C(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(b) * invfact(a - b); } T invC(int a, int b){ if (a < b || b < 0) return 0; return fact(b) * fact(a - b) *invfact(a); } T P(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(a - b); } T inv(int a){ if (a < 0) return inv(-a) * T(-1); if (a == 0) return 1; return fact(a - 1) * invfact(a); } T Catalan(int n){ if (n < 0) return 0; return fact(2 * n) * invfact(n + 1) * invfact(n); } T narayana(int n, int k){ if (n <= 0 || n < k || k < 1) return 0; return C(n, k) * C(n, k - 1) * inv(n); } T Catalan_pow(int n,int d){ if (n < 0 || d < 0) return 0; if (d == 0){ if (n == 0) return 1; return 0; } return T(d) * inv(d + n) * C(2 * n + d - 1, n); } // retrun [x^a] 1/(1-x)^b T ruiseki(int a,int b){ if (a < 0 || b < 0) return 0; if (a == 0){ return 1; } return C(a + b - 1, b - 1); } // (a, b) -> (c, d) // always x + e >= y T mirror(int a, int b, int c, int d, int e = 0){ if (a + e < b || c + e < d) return 0; if (a > c || b > d) return 0; a += e; c += e; return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1); } // return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i) // return C(a + b + 2, a + 1) - 1; T gird_sum(int a, int b){ if (a < 0 || b < 0) return 0; return C(a + b + 2, a + 1) - 1; } // return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i) // AGC 018 E T gird_sum_2(int a, int b, int c, int d){ if (a >= b || c >= d) return 0; a--, b--, c--, d--; return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d); } // the number of diagonal dissections of a convex n-gon into k+1 regions. // OEIS A033282 // AGC065D T diagonal(int n, int k){ if (n <= 2 || n - 3 < k || k < 0) return 0; return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1); } }; } #line 27 "e.cpp" using mint = atcoder::modint998244353; void solve(); // CITRUS CURIO CITY / FREDERIC int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t = 1; // cin >> t; rep(i, 0, t) solve(); } void solve(){ ll N, K; cin >> N >> K; string S; cin >> S; int C = 0; rep(i, 0, K){ if (S[i] == ')') break; C++; } reverse(all(S)); rep(i, 0, K) { if (S[i] == '(') break; C++; } po167::Binomial<mint> table; if (C != K){ mint ans = 1; rep(i, 0, C + 1) ans *= (N - K + C + 1 - i); ans *= table.invfact(C + 1); cout << ans.val() << "\n"; return; } vector<mint> p(K + 1); rep(i, 0, K + 1) p[i] = table.C(K, i) * (i & 1 ? -1 : 1); p.push_back(0); for (int i = K; i >= 0; i--) p[i + 1] -= p[i] * 2; auto ans = po167::Boston_Mori(N - K, {1}, p); cout << ans.val() << "\n"; }