結果

問題 No.3138 Minimum Bracket Subsequence
ユーザー 👑 potato167
提出日時 2025-04-27 20:01:08
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 9,430 bytes
コンパイル時間 4,010 ms
コンパイル使用メモリ 239,332 KB
実行使用メモリ 34,168 KB
最終ジャッジ日時 2025-04-27 20:01:17
合計ジャッジ時間 8,040 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 16 TLE * 1 -- * 19
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "e.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
const ll ILL=2167167167167167167;
const int INF=2100000000;
#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)
#define all(p) p.begin(),p.end()
template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;
template<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}
template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}
template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}
template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}
bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}
template<class T> void vec_out(vector<T> &p,int ty=0){
    if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}
    else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}
template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}
template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}
template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}
int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}
template<class T> T square(T a){return a * a;}

#line 3 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp"
#include <atcoder/convolution>
#line 4 "/Users/Shared/po167_library/fps/FPS_extend.hpp"

namespace po167{
// in  : DFT(v) (len(v) = z)
// out : DFT(v) (len(v) = 2 * z)
template<class T>
void FPS_extend(std::vector<T> &v){
    int z = v.size();
    T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
    auto cp = v;
    atcoder::internal::butterfly_inv(cp);
    T tmp = (T)(1) / (T)(z);
    for (int i = 0; i < z; i++){
        cp[i] *= tmp;
        tmp *= e;
    }
    atcoder::internal::butterfly(cp);
    for (int i = 0; i < z; i++) v.push_back(cp[i]);
};
}
#line 3 "/Users/Shared/po167_library/fps/FPS_pick_even_odd.hpp"

namespace po167{
// s.t |v| = 2 ^ s (no assert)
template<class T>
void FPS_pick_even_odd(std::vector<T> &v, int odd){
    int z = v.size() / 2;
    T half = (T)(1) / (T)(2);
    if (odd == 0){
        for (int i = 0; i < z; i++){
            v[i] = (v[i * 2] + v[i * 2 + 1]) * half;
        }
        v.resize(z);
    } else {
        T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
        T ie = T(1) / e;
        std::vector<T> es = {half};
        while ((int)es.size() != z){
            std::vector<T> n_es((int)es.size() * 2);
            for (int i = 0; i < (int)es.size(); i++){
                n_es[i * 2] = (es[i]);
                n_es[i * 2 + 1] = (es[i] * ie);
            }
            ie *= ie;
            std::swap(n_es, es);
        }
        for (int i = 0; i < z; i ++){
            v[i] = (v[i * 2] - v[i * 2 + 1]) * es[i];
        }
        v.resize(z);
    }
}
}
#line 7 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp"

namespace po167{
// return [x^k] P(x) / Q(x)
template<class T>
T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q){
    assert(!Q.empty() && Q[0] != 0);
    int z = 1;
    while (z < (int)std::max(P.size(), Q.size())) z *= 2;
    P.resize(z * 2, 0);
    Q.resize(z * 2, 0);
    atcoder::internal::butterfly(P);
    atcoder::internal::butterfly(Q);

    // fast
    while (k){
        // Q(-x)
        std::vector<T> Q_n(z * 2);
        for (int i = 0; i < z; i++){
            Q_n[i * 2] = Q[i * 2 + 1];
            Q_n[i * 2 + 1] = Q[i * 2];
        }
        for (int i = 0; i < z * 2; i++){
            P[i] *= Q_n[i];
            Q[i] *= Q_n[i];
        }
        FPS_pick_even_odd(P, k & 1);
        FPS_pick_even_odd(Q, 0);
        k /= 2;
        if (k == 0) break;
        FPS_extend(P);
        FPS_extend(Q);
    }
    T SP = 0, SQ = 0;
    for (int i = 0; i < z; i++) SP += P[i], SQ += Q[i];
    return SP / SQ;

    // simple
    /*
    while (k){
        auto n_Q = Q;
        for (int i = 0; i < int(Q.size()); i++){
            if (i & 1) n_Q[i] *= -1;
        }
        auto n_P = atcoder::convolution(P, n_Q);
        n_Q = atcoder::convolution(Q, n_Q);
        for (int i = 0; i < int(Q.size()); i++){
            Q[i] = n_Q[i * 2];
        }
        P.clear();
        for (int i = (k & 1); i < int(n_P.size()); i += 2){
            P.push_back(n_P[i]);
        }
        k >>= 1;
    }
    return P[0] / Q[0];
    */
}

template<class T>
// 0 = a[i] * c[0] + a[i - 1] * c[1] + a[i - 2] * c[2] + ... + a[i - d] * c[d]
// a.size() + 1 == c.size()
// c[0] = - 1 ?
// return a[k]
T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c){
    int d = a.size();
    assert(d + 1 == int(c.size()));
    std::vector<T> P = atcoder::convolution(a, c);
    P.resize(d);
    return Boston_Mori(k, P, c);
}
};
#line 2 "/Users/Shared/po167_library/math/Binomial.hpp"

#line 5 "/Users/Shared/po167_library/math/Binomial.hpp"

namespace po167{
template<class T>
struct Binomial{
    std::vector<T> fact_vec, fact_inv_vec;
    void extend(int m = -1){
        int n = fact_vec.size();
        if (m == -1) m = n * 2;
        if (n >= m) return;
        fact_vec.resize(m);
        fact_inv_vec.resize(m);
        for (int i = n; i < m; i++){
            fact_vec[i] = fact_vec[i - 1] * T(i);
        }
        fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1];
        for (int i = m - 1; i > n; i--){
            fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i);
        }
    }
    Binomial(int MAX = 0){
        fact_vec.resize(1, T(1));
        fact_inv_vec.resize(1, T(1));
        extend(MAX + 1);
    }

    T fact(int i){
        if (i < 0) return 0;
        while (int(fact_vec.size()) <= i) extend();
        return fact_vec[i];
    }
    T invfact(int i){
        if (i < 0) return 0;
        while (int(fact_inv_vec.size()) <= i) extend();
        return fact_inv_vec[i];
    }
    T C(int a, int b){
        if (a < b || b < 0) return 0;
        return fact(a) * invfact(b) * invfact(a - b);
    }
    T invC(int a, int b){
        if (a < b || b < 0) return 0;
        return fact(b) * fact(a - b) *invfact(a);
    }
    T P(int a, int b){
        if (a < b || b < 0) return 0;
        return fact(a) * invfact(a - b);
    }
    T inv(int a){
        if (a < 0) return inv(-a) * T(-1);
        if (a == 0) return 1;
        return fact(a - 1) * invfact(a);
    }
    T Catalan(int n){
        if (n < 0) return 0;
        return fact(2 * n) * invfact(n + 1) * invfact(n);
    }
    T narayana(int n, int k){
        if (n <= 0 || n < k || k < 1) return 0;
        return C(n, k) *  C(n, k - 1) * inv(n);
    }
    T Catalan_pow(int n,int d){
        if (n < 0 || d < 0) return 0;
        if (d == 0){
            if (n == 0) return 1;
            return 0;
        }
        return T(d) * inv(d + n) * C(2 * n + d - 1, n);
    }
    // retrun [x^a] 1/(1-x)^b
    T ruiseki(int a,int b){
        if (a < 0 || b < 0) return 0;
        if (a == 0){
            return 1;
        }
        return C(a + b - 1, b - 1);
    }
    // (a, b) -> (c, d)
    // always x + e >= y
    T mirror(int a, int b, int c, int d, int e = 0){
        if (a + e < b || c + e < d) return 0;
        if (a > c || b > d) return 0;
        a += e;
        c += e;
        return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1); 
    }
    // return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i)
    // return C(a + b + 2, a + 1) - 1;
    T gird_sum(int a, int b){
        if (a < 0 || b < 0) return 0;
        return C(a + b + 2, a + 1) - 1;
    }
    // return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i)
    // AGC 018 E
    T gird_sum_2(int a, int b, int c, int d){
        if (a >= b || c >= d) return 0;
        a--, b--, c--, d--;
        return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d);
    }

    // the number of diagonal dissections of a convex n-gon into k+1 regions.
    // OEIS A033282
    // AGC065D
    T diagonal(int n, int k){
        if (n <= 2 || n - 3 < k || k < 0) return 0;
        return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1);
    }
};
}
#line 27 "e.cpp"
using mint = atcoder::modint998244353;

void solve();
// CITRUS CURIO CITY / FREDERIC
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int t = 1;
    // cin >> t;
    rep(i, 0, t) solve();
}

void solve(){
    ll N, K;
    cin >> N >> K;
    string S;
    cin >> S;
    int C = 0;
    rep(i, 0, K){
        if (S[i] == ')') break;
        C++;
    }
    reverse(all(S));
    rep(i, 0, K) {
        if (S[i] == '(') break;
        C++;
    }
    po167::Binomial<mint> table;
    if (C != K){
        mint ans = 1;
        rep(i, 0, C + 1) ans *= (N - K + C + 1 - i);
        ans *= table.invfact(C + 1);
        cout << ans.val() << "\n";
        return;
    }
    vector<mint> p(K + 1);
    rep(i, 0, K + 1) p[i] = table.C(K, i) * (i & 1 ? -1 : 1);
    p.push_back(0);
    for (int i = K; i >= 0; i--) p[i + 1] -=  p[i] * 2;
    auto ans = po167::Boston_Mori(N - K, {1}, p);
    cout << ans.val() << "\n";
}
0