結果
問題 |
No.2996 Floor Sum
|
ユーザー |
![]() |
提出日時 | 2025-05-02 20:40:05 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 66 ms / 5,000 ms |
コード長 | 16,338 bytes |
コンパイル時間 | 14,094 ms |
コンパイル使用メモリ | 394,268 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-02 20:40:20 |
合計ジャッジ時間 | 13,724 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 12 |
コンパイルメッセージ
warning: associated constants `PRIMITIVE_ROOT` and `ORDER` are never used --> src/main.rs:429:11 | 413 | impl<const M: u32> ModInt<{ M }> { | -------------------------------- associated constants in this implementation ... 429 | const PRIMITIVE_ROOT: u32 = primitive_root(M); | ^^^^^^^^^^^^^^ 430 | const ORDER: usize = 1 << (M - 1).trailing_zeros(); | ^^^^^ | = note: `#[warn(dead_code)]` on by default
ソースコード
fn main() { input! { t: usize, ask: [(usize, usize, i64, i64, i64, i64); t], } if t <= 5 { solve::<11, 11>(ask); } else { solve::<3, 3>(ask); } } fn solve<const A: usize, const B: usize>(ask: Vec<(usize, usize, i64, i64, i64, i64)>) { let pc = Precalc::new(100); for (p, q, n, m, mut a, mut b) in ask { let neg = a < 0; if neg { b = b + n * a; a = -a; } let d = b.div_euclid(m); let b = b - d * m; let res = floor_monoid( n as usize + 1, m as usize, a as usize, b as usize, GenericFloorSum::<M, A, B>::dx(), GenericFloorSum::<M, A, B>::dy(), ) .flush(); let d = M::from(d); let mut ans = M::zero(); if neg { for i in 0..=p { for j in 0..=q { let mut v = res[i][j]; if i % 2 == 1 { v = -v; } v *= pc.binom(p, i) * M::from(n).pow((p - i) as u64); v *= pc.binom(q, j) * M::from(d).pow((q - j) as u64); ans += v; } } } else { for j in 0..=q { let mut v = res[p][j]; v *= pc.binom(q, j) * M::from(d).pow((q - j) as u64); ans += v; } } println!("{}", ans); } } type M = ModInt<998_244_353>; // OP=false の時、モノイドではなくなるのに注意 #[derive(Clone)] pub struct GenericFloorSum<T, const A: usize, const B: usize, const OP: bool = false> { x: [T; A], y: [T; B], s: [[T; B]; A], } impl<T, const A: usize, const B: usize, const OP: bool> GenericFloorSum<T, A, B, OP> where T: SemiRing + Copy, { fn dx() -> Self { let mut res = Self::id(); res.x[1] = T::one(); res.s[0][0] = T::one(); res } fn dy() -> Self { let mut res = Self::id(); res.y[1] = T::one(); res } fn flush(&self) -> [[T; B]; A] { let mat = floor_flush_matrix::<T, A>(); let mut ns = [[T::zero(); B]; A]; for (ns, mat) in ns.iter_mut().zip(mat.iter()) { for (s, m) in self.s.iter().zip(mat.iter()) { for (ns, s) in ns.iter_mut().zip(s.iter()) { *ns = *ns + *m * *s; } } } let mat = floor_flush_matrix::<T, B>(); let mut s = [[T::zero(); B]; A]; for (s, ns) in s.iter_mut().zip(ns.iter()) { for (s, mat) in s.iter_mut().zip(mat.iter()) { for (m, ns) in mat.iter().zip(ns.iter()) { *s = *s + *m * *ns; } } } s } } fn floor_flush_matrix<T, const N: usize>() -> [[T; N]; N] where T: SemiRing + Copy, { let mut res = [[T::zero(); N]; N]; let mut dp = [T::zero(); N]; dp[0] = T::one(); res[0] = dp; for i in 1..N { let mut next = [T::zero(); N]; let mut mul = T::one(); for j in 1..N { next[j] = mul * (dp[j - 1] + dp[j]); mul = mul + T::one(); } dp = next; res[i] = dp; } res } impl<T, const A: usize, const B: usize, const OP: bool> Monoid for GenericFloorSum<T, A, B, OP> where T: SemiRing + Copy, { fn id() -> Self { let mut res = Self { x: [T::zero(); A], y: [T::zero(); B], s: [[T::zero(); B]; A], }; res.x[0] = T::one(); res.y[0] = T::one(); res } fn merge(&self, rhs: &Self) -> Self { if OP { let mut x = [T::zero(); A]; let mut ns = [[T::zero(); B]; A]; for (i, a) in self.x.iter().enumerate() { for (c, b) in x[i..].iter_mut().zip(rhs.x.iter()) { *c = *c + *a * *b; } for (ns, b) in ns[i..].iter_mut().zip(rhs.s.iter()) { for (ns, b) in ns.iter_mut().zip(b.iter()) { *ns = *ns + *a * *b; } } } let mut y = [T::zero(); B]; let mut s = self.s; for (i, a) in self.y.iter().enumerate() { for (c, b) in y[i..].iter_mut().zip(rhs.y.iter()) { *c = *c + *a * *b; } for (s, ns) in s.iter_mut().zip(ns.iter()) { for (c, b) in s[i..].iter_mut().zip(ns.iter()) { *c = *c + *a * *b; } } } Self { x, y, s } } else { let mut x = rhs.x; let mut ns = rhs.s; for i in 1..A { let a = self.x[i]; for j in i..A { x[j] = x[j] + a * rhs.x[j - i]; } for j in i..A { for k in 0..B { ns[j][k] = ns[j][k] + a * rhs.s[j - i][k]; } } } let mut y = rhs.y; let mut s = ns; for i in 1..B { let a = self.y[i]; for j in i..B { y[j] = y[j] + a * rhs.y[j - i]; } for k in 0..A { for j in i..B { s[k][j] = s[k][j] + a * ns[k][j - i]; } } } for i in 0..A { for j in 0..B { s[i][j] = s[i][j] + self.s[i][j]; } } Self { x, y, s } } } } pub trait Monoid: Clone { fn id() -> Self; fn merge(&self, rhs: &Self) -> Self; fn pow(&self, mut n: usize) -> Self { if n == 0 { return Self::id(); } if n == 1 { return self.clone(); } let mut t = self.clone(); n -= 1; let mut r = self.clone(); while n > 1 { if n & 1 == 1 { t = t.merge(&r); } r = r.merge(&r); n >>= 1; } t.merge(&r) } } pub fn floor_monoid<T>( mut n: usize, mut m: usize, mut a: usize, mut b: usize, mut x: T, mut y: T, ) -> T where T: Monoid, { let mut front = T::id(); let mut tail = T::id(); let mut c = (a * n + b) / m; loop { if a >= m { let q = a / m; a %= m; x = x.merge(&y.pow(q)); c -= q * n; } if b >= m { let q = b / m; b %= m; front = front.merge(&y.pow(q)); c -= q; } if c == 0 { break; } let need = (m * c - b + a - 1) / a; tail = y.merge(&x.pow(n - need)).merge(&tail); n = c - 1; c = need; b = m - b + a - 1; std::mem::swap(&mut a, &mut m); std::mem::swap(&mut x, &mut y); } front.merge(&x.pow(n)).merge(&tail) } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- use std::ops::*; // ---------- begin trait ---------- pub trait Zero: Sized + Add<Self, Output = Self> { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul<Self, Output = Self> { fn one() -> Self; fn is_one(&self) -> bool; } pub trait SemiRing: Zero + One {} pub trait Ring: SemiRing + Sub<Output = Self> + Neg<Output = Self> {} pub trait Field: Ring + Div<Output = Self> {} impl<T> SemiRing for T where T: Zero + One {} impl<T> Ring for T where T: SemiRing + Sub<Output = Self> + Neg<Output = Self> {} impl<T> Field for T where T: Ring + Div<Output = Self> {} // ---------- end trait ---------- // ---------- begin modint ---------- pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 { let mut t = 1; while n > 0 { if n & 1 == 1 { t = (t as u64 * r as u64 % m as u64) as u32; } r = (r as u64 * r as u64 % m as u64) as u32; n >>= 1; } t } pub const fn primitive_root(p: u32) -> u32 { let mut m = p - 1; let mut f = [1; 30]; let mut k = 0; let mut d = 2; while d * d <= m { if m % d == 0 { f[k] = d; k += 1; } while m % d == 0 { m /= d; } d += 1; } if m > 1 { f[k] = m; k += 1; } let mut g = 1; while g < p { let mut ok = true; let mut i = 0; while i < k { ok &= pow_mod(g, (p - 1) / f[i], p) > 1; i += 1; } if ok { break; } g += 1; } g } pub const fn is_prime(n: u32) -> bool { if n <= 1 { return false; } let mut d = 2; while d * d <= n { if n % d == 0 { return false; } d += 1; } true } #[derive(Clone, Copy, PartialEq, Eq)] pub struct ModInt<const M: u32>(u32); impl<const M: u32> ModInt<{ M }> { const REM: u32 = { let mut t = 1u32; let mut s = !M + 1; let mut n = !0u32 >> 2; while n > 0 { if n & 1 == 1 { t = t.wrapping_mul(s); } s = s.wrapping_mul(s); n >>= 1; } t }; const INI: u64 = ((1u128 << 64) % M as u128) as u64; const IS_PRIME: () = assert!(is_prime(M)); const PRIMITIVE_ROOT: u32 = primitive_root(M); const ORDER: usize = 1 << (M - 1).trailing_zeros(); const fn reduce(x: u64) -> u32 { let _ = Self::IS_PRIME; let b = (x as u32 * Self::REM) as u64; let t = x + b * M as u64; let mut c = (t >> 32) as u32; if c >= M { c -= M; } c as u32 } const fn multiply(a: u32, b: u32) -> u32 { Self::reduce(a as u64 * b as u64) } pub const fn new(v: u32) -> Self { assert!(v < M); Self(Self::reduce(v as u64 * Self::INI)) } pub const fn const_mul(&self, rhs: Self) -> Self { Self(Self::multiply(self.0, rhs.0)) } pub const fn pow(&self, mut n: u64) -> Self { let mut t = Self::new(1); let mut r = *self; while n > 0 { if n & 1 == 1 { t = t.const_mul(r); } r = r.const_mul(r); n >>= 1; } t } pub const fn inv(&self) -> Self { assert!(self.0 != 0); self.pow(M as u64 - 2) } pub const fn get(&self) -> u32 { Self::reduce(self.0 as u64) } pub const fn zero() -> Self { Self::new(0) } pub const fn one() -> Self { Self::new(1) } } impl<const M: u32> Add for ModInt<{ M }> { type Output = Self; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= M { v -= M; } Self(v) } } impl<const M: u32> Sub for ModInt<{ M }> { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += M; } Self(v) } } impl<const M: u32> Mul for ModInt<{ M }> { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { self.const_mul(rhs) } } impl<const M: u32> Div for ModInt<{ M }> { type Output = Self; fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl<const M: u32> AddAssign for ModInt<{ M }> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<const M: u32> SubAssign for ModInt<{ M }> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<const M: u32> MulAssign for ModInt<{ M }> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<const M: u32> DivAssign for ModInt<{ M }> { fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } } impl<const M: u32> Neg for ModInt<{ M }> { type Output = Self; fn neg(self) -> Self::Output { if self.0 == 0 { self } else { Self(M - self.0) } } } impl<const M: u32> std::fmt::Display for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::fmt::Debug for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::str::FromStr for ModInt<{ M }> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<const M: u32> From<usize> for ModInt<{ M }> { fn from(val: usize) -> ModInt<{ M }> { ModInt::new((val % M as usize) as u32) } } impl<const M: u32> From<i64> for ModInt<{ M }> { fn from(val: i64) -> ModInt<{ M }> { ModInt::new((val % M as i64 + M as i64) as u32 % M) } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<const MOD: u32> { fact: Vec<ModInt<MOD>>, ifact: Vec<ModInt<MOD>>, inv: Vec<ModInt<MOD>>, } impl<const MOD: u32> Precalc<MOD> { pub fn new(size: usize) -> Self { let mut fact = vec![ModInt::one(); size + 1]; let mut ifact = vec![ModInt::one(); size + 1]; let mut inv = vec![ModInt::one(); size + 1]; for i in 2..=size { fact[i] = fact[i - 1] * ModInt::from(i); } ifact[size] = fact[size].inv(); for i in (2..=size).rev() { inv[i] = ifact[i] * fact[i - 1]; ifact[i - 1] = ifact[i] * ModInt::from(i); } Self { fact, ifact, inv } } pub fn fact(&self, n: usize) -> ModInt<MOD> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<MOD> { self.ifact[n] } pub fn inv(&self, n: usize) -> ModInt<MOD> { assert!(0 < n); self.inv[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> { if n < k { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- impl<const M: u32> Zero for ModInt<{ M }> { fn zero() -> Self { Self::zero() } fn is_zero(&self) -> bool { self.0 == 0 } } impl<const M: u32> One for ModInt<{ M }> { fn one() -> Self { Self::one() } fn is_one(&self) -> bool { self.get() == 1 } }