結果
| 問題 |
No.3138 Minimum Bracket Subsequence
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2025-05-02 22:54:21 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 15,992 bytes |
| コンパイル時間 | 4,628 ms |
| コンパイル使用メモリ | 298,756 KB |
| 実行使用メモリ | 47,824 KB |
| 最終ジャッジ日時 | 2025-05-02 22:54:30 |
| 合計ジャッジ時間 | 8,303 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 16 TLE * 1 -- * 19 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template <int mod>
struct modint {
static constexpr uint32_t umod = uint32_t(mod);
static_assert(umod < (uint32_t(1) << 31));
uint32_t val;
static modint raw(uint32_t v) {
modint x;
x.val = v % umod;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(uint32_t x) : val(x % umod) {}
constexpr modint(uint64_t x) : val(x % umod) {}
constexpr modint(__uint128_t x) : val(x % umod) {}
constexpr modint(int x) : val((x %= int(umod)) < 0 ? x + umod : x) {};
constexpr modint(long long x) : val((x %= int(umod)) < 0 ? x + umod : x) {};
constexpr modint(__int128_t x) : val((x %= int(umod)) < 0 ? x + umod : x) {};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = uint64_t(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
val = uint64_t(val) * p.inverse().val % umod;
return *this;
}
modint operator-() const { return modint::raw(val ? umod - val : uint32_t(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = umod, s = 1, t = 0;
while (1) {
if (a == 1) return modint(s);
t -= (b / a) * s;
b %= a;
if (b == 1) return modint(t + umod);
s -= (a / b) * t;
a %= b;
}
}
modint pow(long long n) const {
n %= (long long)(umod);
if (n < 0) n += umod - 1;
modint res(1), a(val);
while (n > 0) {
if (n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
uint32_t get() const { return val; }
static constexpr int get_mod() { return mod; }
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
return {-1, -1};
}
};
template <int mod>
void rd(modint<mod> &x) {
uint32_t y;
cin >> y;
x = y;
}
template <int mod>
void wt(modint<mod> x) {
wt(x.val);
}
template <typename mint>
mint fact(long long n) {
static vector<mint> res = {1, 1};
static long long le = 1;
if (n < 0) return mint(0);
while (le <= n){
le++;
res.push_back(res[le - 1] * le);
}
return res[n];
}
template <typename mint>
mint fact_inv(long long n) {
static vector<mint> res = {1, 1};
static long long le = 1;
if (n < 0) return mint(0);
while (le <= n) {
le++;
res.push_back(res[le - 1] / le);
}
return res[n];
}
template <typename mint>
mint binom(long long n, long long r) {
if (n < 0 || r < 0 || n < r) return 0;
mint res = fact<mint>(n) * (fact_inv<mint>(n - r) * fact_inv<mint>(r));
return res;
}
template <class mint>
void ntt(vector<mint> &a, bool inverse) {
const int mod = mint::get_mod();
const int rank2 = mint::ntt_info().first;
static array<mint, 30> root, rate2, rate3, iroot, irate2, irate3;
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().second;
iroot[rank2] = mint(1) / root[rank2];
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i < rank2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i < rank2 - 1; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size()), h = (n == 0 ? -1 : 31 - __builtin_clz(n));
if (!inverse) {
int le = 0;
while (le < h) {
if (h - le == 1) {
int p = 1 << (h - le - 1);
mint rot = 1;
for (int s = 0; s < (1 << le); s++) {
int offset = s << (h - le);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[((~s & -~s) == 0 ? -1 : 31 - __builtin_clz(~s & -~s))];
}
le++;
}
else {
int p = 1 << (h - le - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << le); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - le);
for (int i = 0; i < p; i++) {
uint64_t mod2 = uint64_t(mod) * mod;
uint64_t a0 = a[i + offset].get();
uint64_t a1 = uint64_t(a[i + offset + p].get()) * rot.get();
uint64_t a2 = uint64_t(a[i + offset + p * 2].get()) * rot2.get();
uint64_t a3 = uint64_t(a[i + offset + p * 3].get()) * rot3.get();
uint64_t a1na3imag = (a1 + mod2 - a3) % mod * imag.get();
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + p * 2] = a0 + mod2 - a2 + a1na3imag;
a[i + offset + p * 3] = a0 + mod2 - a2 + (mod2 - a1na3imag);
}
rot = rot * rate3[((~s & -~s) == 0 ? -1 : 31 - __builtin_clz(~s & -~s))];
}
le = le + 2;
}
}
}
else {
mint coef = mint(n).inverse();
for (int i = 0; i < n; i++) {
a[i] *= coef;
}
int le = h;
while (le) {
if (le == 1) {
int p = 1 << (h - le);
mint irot = 1;
for (int s = 0; s < (1 << (le - 1)); s++) {
int offset = s << (h - le + 1);
for (int i = 0; i < p; i++) {
uint64_t l = a[i + offset].get();
uint64_t r = a[i + offset + p].get();
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.get();
}
irot *= irate2[((~s & -~s) == 0 ? -1 : 31 - __builtin_clz(~s & -~s))];
}
le--;
}
else {
int p = 1 << (h - le);
mint irot = 1, iimag = iroot[2];
for (int s = 0; s < (1 << (le - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - le + 2);
for (int i = 0; i < p; i++) {
uint64_t a0 = a[i + offset].get();
uint64_t a1 = a[i + offset + p].get();
uint64_t a2 = a[i + offset + p * 2].get();
uint64_t a3 = a[i + offset + p * 3].get();
uint64_t a2na3iimag = (mod + a2 - a3) * iimag.get() % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + p] = (a0 + mod - a1 + a2na3iimag) * irot.get();
a[i + offset + p * 2] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.get();
a[i + offset + p * 3] = (a0 + 2 * mod - a1 - a2na3iimag) * irot3.get();
}
irot *= irate3[((~s & -~s) == 0 ? -1 : 31 - __builtin_clz(~s & -~s))];
}
le = le - 2;
}
}
}
}
template <class mint>
vector<mint> convolution_naive(vector<mint> a, vector<mint> b) {
vector<mint> res(size(a) + size(b) - 1);
for (int i = 0; i < int(size(a)); i++) {
if (a[i] == mint(0)) continue;
for (int j = 0; j < int(size(b)); j++) {
res[i + j] = res[i + j] + a[i] * b[j];
}
}
return res;
}
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
int n = a.size();
int m = b.size();
if (min(n, m) <= 60) return convolution_naive(a, b);
int le = 1;
while (le < n + m - 1) le = le * 2;
a.resize(le), b.resize(le);
ntt(a, 0), ntt(b, 0);
for (int i = 0; i < le; i++) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <class mint>
vector<mint> convolution(vector<mint> a, vector<mint> b) {
return convolution_ntt(a, b);
}
template <class mint>
vector<mint> fps_inv(vector<mint> f, int deg = -1) {
assert (f[0] != mint(0));
if (deg == -1) deg = int(f.size());
f.resize(deg);
int n = int(f.size());
// ntt prime
if (mint::ntt_info().first != -1) {
vector<mint> g(deg, mint(0));
g[0] = f[0].inverse();
int le = 1;
while (le < deg) {
vector<mint> a(2 * le, mint(0)), b(2 * le, mint(0));
for (int i = 0; i < min(n, 2 * le); i++) {
a[i] = f[i];
}
for (int i = 0; i < le; i++) {
b[i] = g[i];
}
ntt(a, 0), ntt(b, 0);
for (int i = 0; i < 2 * le; i++) {
a[i] *= b[i];
}
ntt(a, 1);
for (int i = 0; i < le; i++) {
a[i] = mint(0);
}
ntt(a, 0);
for (int i = 0; i < 2 * le; i++) {
a[i] *= b[i];
}
ntt(a, 1);
for (int i = le; i < min(deg, 2 * le); i++) {
g[i] = -a[i];
}
le *= 2;
}
return g;
}
// not ntt prime
// doubling
else {
vector<mint> g = {f[0].inverse()};
vector<mint> gg(0);
int le = 1;
while (le < deg) {
gg = convolution(g, g);
gg.resize(2 * le);
vector<mint> ff = {f.begin(), f.begin() + min(2 * le, n)};
gg = convolution(gg, f);
g.resize(2 * le);
for (int i = 0; i < 2 * le; i++) {
g[i] = g[i] + g[i] - gg[i];
}
le *= 2;
}
g.resize(deg);
return g;
}
}
template <class mint>
vector<mint> fps_exp(vector<mint> f, int deg = -1) {
if (deg == -1) deg = int(f.size());
f.resize(deg);
int n = int(f.size());
assert (n > 0);
assert (f[0] == mint(0));
// ntt prime
if (mint::ntt_info().first != -1) {
vector<mint> g = {mint(1), mint(0)};
if (f.size() > 1) g[1] = f[1];
vector<mint> h = {mint(1)};
vector<mint> p, q;
q = {mint(1), mint(1)};
int le = 2;
while (le < deg) {
vector<mint> y = g;
y.resize(2 * le);
ntt(y, 0);
p = q;
vector<mint> z(le);
for (int i = 0; i < le; i++) {
z[i] = y[i] * p[i];
}
ntt(z, 1);
for (int i = 0; i < le / 2; i++) {
z[i] = mint(0);
}
ntt(z, 0);
for (int i = 0; i < int(p.size()); i++) {
z[i] = z[i] * (-p[i]);
}
ntt(z, 1);
for (int i = le / 2; i < le; i++) {
h.push_back(z[i]);
}
q = h;
q.resize(2 * le);
ntt(q, 0);
vector<mint> x(le, mint(0));
for (int i = 0; i < le - 1; i++) {
x[i] = f[i + 1] * mint(i + 1);
}
ntt(x, 0);
for (int i = 0; i < le; i++) {
x[i] *= y[i];
}
ntt(x, 1);
for (int i = 0; i < le - 1; i++) {
x[i] -= g[i + 1] * mint(i + 1);
}
x.resize(2 * le);
for (int i = 0; i < le - 1; i++) {
x[i + le] = x[i], x[i] = mint(0);
}
ntt(x, 0);
for (int i = 0; i < 2 * le; i++) {
x[i] *= q[i];
}
ntt(x, 1);
for (int i = int(x.size()) - 2; i >= 0; i--) {
x[i + 1] = x[i] * mint(i + 1).inverse();
}
for (int i = 0; i < le; i++) {
x[i] = mint(0);
}
for (int i = le; i < 2 * le; i++) {
x[i] += f[i];
}
ntt(x, 0);
for (int i = 0; i < 2 * le; i++) {
x[i] *= y[i];
}
ntt(x, 1);
for (int i = le; i < int(x.size()); i++) {
g.push_back(x[i]);
}
le *= 2;
}
g.resize(deg);
return g;
}
// not ntt prime
// Newton's method
else {
int log = 0;
while ((1 << log) < deg) log++;
f.resize(1 << log);
vector<mint> df(1 << log, mint(0));
for (int i = 1; i < (1 << log); i++) {
df[i - 1] = f[i] * mint(i);
}
vector<mint> g = {mint(1)}, h = {mint(1)};
int le = 1;
vector<mint> p;
for (int _ = 0; _ < log; _++) {
p = convolution(g, h);
p.resize(le);
p = convolution(p, h);
p.resize(le);
h.resize(le);
for (int i = 0; i < le; i++) {
h[i] += h[i] - p[i];
}
p = {df.begin(), df.begin() + le - 1};
p = convolution(g, p);
p.resize(2 * le - 1);
for (int i = 0; i < 2 * le - 1; i++) {
p[i] = -p[i];
}
for (int i = 0; i < le - 1; i++) {
p[i] += g[i + 1] * mint(i + 1);
}
p = convolution(p, h);
p.resize(2 * le - 1);
for (int i = 0; i < le - 1; i++) {
p[i] += df[i];
}
p.push_back(mint(0));
for (int i = 2 * le - 2; i >= 0; i--) {
p[i + 1] = p[i] * mint(i + 1).inverse();
}
p[0] = mint(0);
for (int i = 0; i < 2 * le; i++) {
p[i] = f[i] - p[i];
}
p[0] = mint(1);
g = convolution(g, p);
g.resize(2 * le);
le *= 2;
}
g.resize(deg);
return g;
}
}
template <class mint>
vector<mint> fps_log(vector<mint> f, int deg = -1) {
if (deg == -1) deg = int(f.size());
f.resize(deg);
int n = int(f.size());
assert (n > 0);
assert (f[0] == mint(1));
vector<mint> df(deg, mint(0));
for (int i = 1; i < min(deg + 1, n); i++) {
df[i - 1] = f[i] * mint(i);
}
vector<mint> f_inv = fps_inv(f, deg);
vector<mint> g = convolution(df, f_inv);
g.resize(deg);
for (int i = deg - 2; i >= 0; i--) {
g[i + 1] = g[i] * mint(i + 1).inverse();
}
g[0] = mint(0);
return g;
}
template <class mint>
vector<mint> fps_pow(vector<mint> f, long long k, int deg = -1) {
if (deg == -1) deg = int(f.size());
if (k == 0) {
vector<mint> g(deg, mint(0));
g[0] = mint(1);
return g;
}
f.resize(deg);
int d = 0;
long long kk = 0; // overflow対策
while (d < deg) {
if (f[d] != mint(0)) break;
d++;
kk += k;
if (kk >= deg) {
vector<mint> g(deg, mint(0));
return g;
}
}
if (d == deg) {
vector<mint> g(deg, mint(0));
return g;
}
int dk = kk;
mint a = f[d];
mint a_inv = a.inverse();
vector<mint> g(deg - dk, mint(0));
for (int i = 0; i < deg - dk; i++) {
g[i] = f[i + d] * a_inv;
}
g = fps_log(g);
for (int i = 0; i < deg - dk; i++) {
g[i] *= mint(k);
}
g = fps_exp(g);
a = a.pow(k);
vector<mint> res(deg, mint(0));
for (int i = 0; i < deg - dk; i++) {
res[i + dk] = g[i] * a;
}
return res;
}
template <class mint>
mint Bostan_Mori(vector<mint> P, vector<mint> Q, long long N) {
while (N) {
vector<mint> QQ = {Q.begin(), Q.end()};
for (int i = 1; i < int(Q.size()); i += 2) QQ[i] = -QQ[i];
P = convolution(P, QQ), Q = convolution(Q, QQ);
vector<mint> S((P.size() + 1) / 2, mint(0)), T((Q.size() + 1) / 2, mint(0));
int r = N % 2;
for (int i = r; i < int(P.size()); i += 2) {
S[i / 2] += P[i];
}
for (int i = 0; i < int(Q.size()); i += 2) T[i / 2] = Q[i];
P = S, Q = T;
N /= 2;
}
return P[0];
}
using mint = modint<998244353>;
using poly = vector<mint>;
int main() {
long long N, K;
cin >> N >> K;
string S;
cin >> S;
if (N == K) {
cout << 1 << endl;
return 0;
}
long long r = 0;
for (int i = 0; i < K; i++) {
if (S[i] == '(') r++;
else break;
}
for (int i = K - 1; i >= 0; i--) {
if (S[i] == ')') r++;
else break;
}
if (r == K) {
// S = ((...()...))のとき
vector<mint> f = {mint(1), -mint(1)};
f = fps_pow(f, K, K + 1);
f = convolution(f, {mint(1), -mint(2)});
mint ans = Bostan_Mori({mint(1)}, f, N - K);
cout << ans.get() << endl;
return 0;
}
r += 2;
mint ans = mint(1);
for (int i = 1; i <= r - 1; i++) {
ans *= mint(N - K + i) / mint(i);
}
cout << ans.get() << endl;
}
PNJ