結果
| 問題 |
No.1553 Lovely City
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-04 01:44:14 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,983 bytes |
| コンパイル時間 | 446 ms |
| コンパイル使用メモリ | 82,208 KB |
| 実行使用メモリ | 223,704 KB |
| 最終ジャッジ日時 | 2025-05-04 01:44:42 |
| 合計ジャッジ時間 | 26,508 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 10 WA * 16 |
ソースコード
# https://yukicoder.me/problems/no/1553
from collections import deque
def scc(N, next_nodes):
"""
有向グラフにおける強連結成分分解
"""
# 深さ優先探索をしてラベリング
stack = deque()
labeling = [-1] * N
v_list = []
parents = [-2] * N
v_index = 0
for s_i in range(N):
if parents[s_i] == -2:
parents[s_i] = -1
stack.append((s_i, 0))
while len(stack) > 0:
v, index = stack.pop()
while index < len(next_nodes[v]):
w = next_nodes[v][index]
if w == parents[v]:
index += 1
continue
if parents[w] != -2:
index += 1
continue
parents[w] = v
stack.append((v, index + 1))
stack.append((w, 0))
break
if len(next_nodes[v]) == index:
labeling[v] = v_index
v_list.append(v)
v_index + 1
# 逆グラフの生成
reversed_nodes = [[] for _ in range(N)]
for i in range(N):
for w in next_nodes[i]:
reversed_nodes[w].append(i)
scc_label = [-1] * N
scc_index = 0
for s_v in reversed(v_list):
if scc_label[s_v] == -1:
queue = deque()
queue.append(s_v)
scc_label[s_v] = scc_index
while len(queue) > 0:
v = queue.popleft()
for w in reversed_nodes[v]:
if scc_label[w] == -1:
scc_label[w] = scc_index
queue.append(w)
scc_index += 1
return scc_label
class UnionFind:
"""
UnionFindの基本的な処理を実装したクラス
"""
def __init__(self, size):
self.root = [i for i in range(size)]
self.size = [1] * size
def get_root(self, v):
if v == self.root[v]:
return v
else:
old_root = self.root[v]
new_root = self.get_root(old_root)
self.root[v] = new_root
return new_root
def merge(self, u, v):
root_u = self.get_root(u)
root_v = self.get_root(v)
if root_u == root_v:
return False
if self.size[root_u] >= self.size[root_v]:
self.size[root_u] += self.size[root_v]
self.root[root_v] = root_u
self.root[v] = root_u
else:
self.size[root_v] += self.size[root_u]
self.root[root_u] = root_v
self.root[u] = root_v
return True
def main():
N, M = map(int, input().split())
next_nodes = [[ ] for _ in range(N)]
edges = []
for _ in range(M):
u, v = map(int, input().split())
next_nodes[u - 1].append(v - 1)
edges.append((u - 1, v - 1))
scc_labels = scc(N, next_nodes)
scc_num = max(scc_labels) + 1
# まず連結成分同士で行き来できないといけないのでそれを足す
scc_map = {}
for i in range(N):
scc_i = scc_labels[i]
if scc_i not in scc_map:
scc_map[scc_i] = []
scc_map[scc_i].append(i)
answer = []
for nodes in scc_map.values():
if len(nodes) <= 1:
continue
for i in range(len(nodes)):
v = nodes[i]
w = nodes[(i + 1) % len(nodes)]
answer.append((v, w))
# 連結成分ごとに分解
uf = UnionFind(scc_num)
for u, v in edges:
scc_u = scc_labels[u]
scc_v = scc_labels[v]
uf.merge(scc_u, scc_v)
ri_map = {}
for u in range(scc_num):
r_i = uf.get_root(u)
if r_i not in ri_map:
ri_map[r_i] = []
ri_map[r_i].append(u)
scc_edges = set()
for u, v in edges:
scc_u = scc_labels[u]
scc_v = scc_labels[v]
if scc_u != scc_v:
scc_edges.add((scc_u, scc_v))
scc_next_nodes = [[] for _ in range(scc_num)]
in_degree = [0] * scc_num
for u, v in scc_edges:
scc_next_nodes[u].append(v)
in_degree[v] += 1
queue = deque()
for scc_nodes in ri_map.values():
for n in scc_nodes:
if in_degree[n] == 0:
queue.append(n)
array = []
while len(queue) > 0:
v = queue.popleft()
array.append(v)
for w in scc_next_nodes[v]:
in_degree[w] -= 1
if in_degree[w] == 0:
queue.append(w)
for i in range(len(array) - 1):
v1 = array[i]
v2 = array[i + 1]
n1 = scc_map[v1][0]
n2 = scc_map[v2][0]
answer.append((n1, n2))
print(len(answer))
for u, v in answer:
print(u + 1, v + 1)
if __name__ == "__main__":
main()