結果
問題 |
No.1923 Divisor Array
|
ユーザー |
|
提出日時 | 2025-05-04 13:55:10 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 357 ms / 2,000 ms |
コード長 | 3,330 bytes |
コンパイル時間 | 445 ms |
コンパイル使用メモリ | 82,660 KB |
実行使用メモリ | 108,476 KB |
最終ジャッジ日時 | 2025-05-04 13:55:19 |
合計ジャッジ時間 | 8,334 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 51 |
ソースコード
## https://yukicoder.me/problems/no/1923 import sys sys.setrecursionlimit(5000) MOD = 998244353 class CombinationCalculator: """ modを考慮したPermutation, Combinationを計算するためのクラス """ def __init__(self, size, mod): self.mod = mod self.factorial = [0] * (size + 1) self.factorial[0] = 1 for i in range(1, size + 1): self.factorial[i] = (i * self.factorial[i - 1]) % self.mod self.inv_factorial = [0] * (size + 1) self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod) for i in reversed(range(size)): self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod def calc_combination(self, n, r): if n < 0 or n < r or r < 0: return 0 if r == 0 or n == r: return 1 ans = self.inv_factorial[n - r] * self.inv_factorial[r] ans %= self.mod ans *= self.factorial[n] ans %= self.mod return ans def calc_permutation(self, n, r): if n < 0 or n < r: return 0 ans = self.inv_factorial[n - r] ans *= self.factorial[n] ans %= self.mod return ans def main(): N, M, K = map(int, input().split()) combi = CombinationCalculator(2 * max(20, M) + 1, MOD) # 1つの素数が分布する個数の計算 dp = [[0] * (M + 2) for _ in range(M + 1)] dp[0][0] = 1 answers = [0] * (M + 1) ppp = 1 answers[0] = 1 for num_iter in range(min(N, M)): ppp *= (N - num_iter) ppp %= MOD p = (ppp * combi.inv_factorial[num_iter + 1]) % MOD for total_index_iter in range(M + 1): if total_index_iter + 1 <= M: dp[num_iter + 1][total_index_iter + 1] += dp[num_iter][total_index_iter] dp[num_iter + 1][total_index_iter + 1] %= MOD m = min(M + 1, 2 * total_index_iter + 2) dp[num_iter + 1][m] -= dp[num_iter][total_index_iter] dp[num_iter + 1][m] %= MOD c = 0 for total_index_iter in range(M + 2): c += dp[num_iter + 1][total_index_iter] c %= MOD dp[num_iter + 1][total_index_iter] = c for m in range(M + 1): answers[m] += (dp[num_iter + 1][m] * p) % MOD answers[m] %= MOD def dfs(total_choced, M, answers, ans, divisor_num, choiced): if total_choced == choiced: return ans if M < divisor_num: return 0 ans_0 = 0 max_m = M // divisor_num for m in reversed(range(1, max_m)): if (m + 1) * divisor_num <= M: ans1 = dfs(total_choced, M, answers, (ans * answers[m]) % MOD, divisor_num * (m + 1), choiced + 1) ans_0 += ans1 ans_0 %= MOD return ans_0 ddd = 1 answer = 1 for choce in range(1, min(15, K) + 1): ddd *= (K - choce + 1) ddd %= MOD d = (ddd * combi.inv_factorial[choce]) % MOD ans0 = dfs(choce, M, answers, 1, 1, 0) answer += (ans0 * d) % MOD answer %= MOD print(answer) if __name__ == "__main__": main()