結果
| 問題 |
No.1923 Divisor Array
|
| ユーザー |
|
| 提出日時 | 2025-05-04 13:55:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 357 ms / 2,000 ms |
| コード長 | 3,330 bytes |
| コンパイル時間 | 445 ms |
| コンパイル使用メモリ | 82,660 KB |
| 実行使用メモリ | 108,476 KB |
| 最終ジャッジ日時 | 2025-05-04 13:55:19 |
| 合計ジャッジ時間 | 8,334 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 51 |
ソースコード
## https://yukicoder.me/problems/no/1923
import sys
sys.setrecursionlimit(5000)
MOD = 998244353
class CombinationCalculator:
"""
modを考慮したPermutation, Combinationを計算するためのクラス
"""
def __init__(self, size, mod):
self.mod = mod
self.factorial = [0] * (size + 1)
self.factorial[0] = 1
for i in range(1, size + 1):
self.factorial[i] = (i * self.factorial[i - 1]) % self.mod
self.inv_factorial = [0] * (size + 1)
self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod)
for i in reversed(range(size)):
self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod
def calc_combination(self, n, r):
if n < 0 or n < r or r < 0:
return 0
if r == 0 or n == r:
return 1
ans = self.inv_factorial[n - r] * self.inv_factorial[r]
ans %= self.mod
ans *= self.factorial[n]
ans %= self.mod
return ans
def calc_permutation(self, n, r):
if n < 0 or n < r:
return 0
ans = self.inv_factorial[n - r]
ans *= self.factorial[n]
ans %= self.mod
return ans
def main():
N, M, K = map(int, input().split())
combi = CombinationCalculator(2 * max(20, M) + 1, MOD)
# 1つの素数が分布する個数の計算
dp = [[0] * (M + 2) for _ in range(M + 1)]
dp[0][0] = 1
answers = [0] * (M + 1)
ppp = 1
answers[0] = 1
for num_iter in range(min(N, M)):
ppp *= (N - num_iter)
ppp %= MOD
p = (ppp * combi.inv_factorial[num_iter + 1]) % MOD
for total_index_iter in range(M + 1):
if total_index_iter + 1 <= M:
dp[num_iter + 1][total_index_iter + 1] += dp[num_iter][total_index_iter]
dp[num_iter + 1][total_index_iter + 1] %= MOD
m = min(M + 1, 2 * total_index_iter + 2)
dp[num_iter + 1][m] -= dp[num_iter][total_index_iter]
dp[num_iter + 1][m] %= MOD
c = 0
for total_index_iter in range(M + 2):
c += dp[num_iter + 1][total_index_iter]
c %= MOD
dp[num_iter + 1][total_index_iter] = c
for m in range(M + 1):
answers[m] += (dp[num_iter + 1][m] * p) % MOD
answers[m] %= MOD
def dfs(total_choced, M, answers, ans, divisor_num, choiced):
if total_choced == choiced:
return ans
if M < divisor_num:
return 0
ans_0 = 0
max_m = M // divisor_num
for m in reversed(range(1, max_m)):
if (m + 1) * divisor_num <= M:
ans1 = dfs(total_choced, M, answers, (ans * answers[m]) % MOD, divisor_num * (m + 1), choiced + 1)
ans_0 += ans1
ans_0 %= MOD
return ans_0
ddd = 1
answer = 1
for choce in range(1, min(15, K) + 1):
ddd *= (K - choce + 1)
ddd %= MOD
d = (ddd * combi.inv_factorial[choce]) % MOD
ans0 = dfs(choce, M, answers, 1, 1, 0)
answer += (ans0 * d) % MOD
answer %= MOD
print(answer)
if __name__ == "__main__":
main()