結果
問題 |
No.1213 sio
|
ユーザー |
![]() |
提出日時 | 2025-05-14 12:57:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,161 bytes |
コンパイル時間 | 570 ms |
コンパイル使用メモリ | 70,048 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-14 12:59:10 |
合計ジャッジ時間 | 1,883 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 13 WA * 12 |
ソースコード
#include <iostream> #include <algorithm> // Not strictly necessary for this code, but includes useful functions like std::max // Using long long for potentially large inputs N, M, up to 10^8 using ll = long long; int main() { // Faster I/O operations for competitive programming std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); ll N, M; // Declare N and M as long long to handle values up to 10^8 std::cin >> N >> M; // The problem asks us to tile an N x M grid using S, I, and O tetrominoes. // We want to minimize the number of uncovered cells first. Since each tetromino covers 4 cells, // the minimum number of uncovered cells is (N * M) % 4. // Among all ways to achieve this minimum uncovered area, we want to minimize the number of I-tetrominoes used. // Case 1: One of the dimensions is 1. // If N = 1, the grid is 1xM. The only tetromino that can fit is the 1x4 I-tetromino. // To minimize uncovered cells, we should place as many 1x4 blocks as possible. // The maximum number of 1x4 blocks we can place is floor(M/4). // This covers 4 * floor(M/4) cells, leaving M % 4 cells uncovered, which is the minimum possible. // All tetrominoes used must be I-type. Thus, the minimum number of I-tetrominoes is M / 4 (integer division). if (N == 1) { std::cout << M / 4 << "\n"; } // Similarly, if M = 1, the grid is Nx1. The only tetromino that can fit is the 4x1 I-tetromino. // The maximum number of 4x1 blocks is floor(N/4). // This covers 4 * floor(N/4) cells, leaving N % 4 cells uncovered, the minimum possible. // All tetrominoes must be I-type. Minimum I-tetrominoes is N / 4. else if (M == 1) { std::cout << N / 4 << "\n"; } // Case 2: Both dimensions are 2 or greater. // If N >= 2 and M >= 2. // Extensive analysis based on tiling theory and decomposition arguments suggests that // for any grid with both dimensions at least 2, it's always possible to achieve the minimum // number of uncovered cells using only S-type tetrominoes (which includes Z-type due to reflections being allowed) // and O-type tetrominoes (2x2 blocks). // For example: // - If N and M are both even, the grid can be perfectly tiled with O-tetrominoes (2x2 blocks). // - If N is even and M is odd (or vice versa), the grid area NM might be divisible by 4 or leave a remainder of 2. // It can be shown through decomposition (e.g., splitting into smaller known-tileable rectangles like 4xM or 2xM) // that the minimal uncovered cells can be achieved without I-tetrominoes. // - If N and M are both odd, the grid area NM is odd. It leaves a remainder of 1 or 3 when divided by 4. // Again, decomposition arguments (e.g., using 3x3 base cases and extending) suggest that minimal uncovered cells // can be achieved without I-tetrominoes. // Since S and O tetrominoes are sufficient to achieve the goal of minimizing uncovered cells when N, M >= 2, // the minimum required number of I-tetrominoes is 0. else { std::cout << 0 << "\n"; } return 0; }