結果
問題 |
No.1510 Simple Integral
|
ユーザー |
![]() |
提出日時 | 2025-05-14 13:12:59 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 9,530 bytes |
コンパイル時間 | 1,002 ms |
コンパイル使用メモリ | 91,328 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-14 13:13:57 |
合計ジャッジ時間 | 2,500 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 43 |
ソースコード
#include <iostream> #include <vector> #include <map> #include <numeric> #include <algorithm> // For std::min // Define the modulus const long long MOD = 998244353; // Modular exponentiation: compute (base^exp) % MOD long long power(long long base, long long exp) { long long res = 1; base %= MOD; while (exp > 0) { // If exponent is odd, multiply result with base if (exp % 2 == 1) res = (res * base) % MOD; // Square the base and halve the exponent base = (base * base) % MOD; exp /= 2; } return res; } // Modular inverse using Fermat's Little Theorem: compute n^(-1) % MOD // Assumes MOD is prime and n is not a multiple of MOD long long modInverse(long long n) { // Normalize n to be in [0, MOD-1] n %= MOD; // Add MOD if n is negative if (n < 0) n += MOD; // The problem constraints and analysis guarantee that n will not be 0. // The values A_i are positive integers, so B_j are positive integers. B_j != 0 mod P. // B_p^2 - B_j^2 != 0 mod P for p != j was also established. // 2 is not 0 mod P. // Thus, we don't need an explicit check for n == 0. // Compute n^(MOD-2) % MOD using modular exponentiation return power(n, MOD - 2); } // Maximum possible value for combinatorial arguments (2N-2). // N <= 100, so max is 198. Use 205 for safety margin. const int MAX_COMB_N = 205; // Arrays to store precomputed factorials and inverse factorials long long fact[MAX_COMB_N]; long long invFact[MAX_COMB_N]; // Precompute factorials and their modular inverses up to max_val void precompute_combinations(int max_val) { // Ensure max_val does not exceed array bounds max_val = std::min(max_val, MAX_COMB_N - 1); // Base cases fact[0] = 1; invFact[0] = 1; // Compute factorials and their inverses iteratively for (int i = 1; i <= max_val; ++i) { fact[i] = (fact[i - 1] * i) % MOD; // fact[i] = (i-1)! * i invFact[i] = modInverse(fact[i]); // invFact[i] = (fact[i])^{-1} } } // Compute nCr mod P using precomputed values: nCr = n! / (r! * (n-r)!) long long nCr_mod(int n, int r) { // Handle invalid arguments for combinations if (r < 0 || r > n) { return 0; } // Check if indices are within precomputed range // This check is mainly for safety; based on N<=100, indices should be fine. if (n >= MAX_COMB_N || r >= MAX_COMB_N || (n - r) >= MAX_COMB_N) { return 0; // Return 0 for out-of-bounds indices } // Calculate nCr using modular arithmetic properties long long res = fact[n]; // n! res = (res * invFact[r]) % MOD; // * (r!)^{-1} res = (res * invFact[n - r]) % MOD; // * ((n-r)!)^(-1} return res; } int main() { // Use faster I/O operations std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int N; // Number of integers in the sequence A std::cin >> N; // Use a map to count frequencies of each A_i std::map<long long, int> A_counts; for (int i = 0; i < N; ++i) { long long val; std::cin >> val; A_counts[val]++; } // Store distinct values B_j (unique A_i) and their multiplicities m_j std::vector<long long> B; // Vector to store distinct A_i values std::vector<int> m; // Vector to store corresponding multiplicities for (auto const& [val, count] : A_counts) { B.push_back(val); m.push_back(count); } int M = B.size(); // Number of distinct values // Precompute factorials up to 2N, needed for C(2k-2, k-1) where max k=N // Maximum value needed is 2N-2. precompute_combinations(2 * N); long long total_integral_value = 0; // Accumulator for the final result long long inv2 = modInverse(2); // Precompute modular inverse of 2, used frequently // Buffers for intermediate calculations reused in each loop iteration for efficiency // Size N+1 is safe since max multiplicity m_j <= N std::vector<long long> H_deriv_vals(N + 1); // Stores H^(k)(-B_j^2) mod P for k=1..mj-1 std::vector<long long> Bell_poly_vals(N + 1); // Stores Bell Polynomial values BP_p mod P for p=0..mj-1 // Main loop: Iterate over each distinct value B_j for (int j = 0; j < M; ++j) { long long Bj = B[j]; // Current distinct value long long Bj2 = (Bj * Bj); // Square of Bj, use long long to avoid overflow before modulo int mj = m[j]; // Multiplicity of Bj // Initialize values needed for the current B_j calculations long long Qj_val = 1; // Value of Q_j(y) evaluated at y = -B_j^2 std::vector<long long> Sk_vals(mj + 1, 0); // Initialize S_k(-B_j^2) values to 0 for k=1..mj-1 // Calculate Q_j(-B_j^2) and S_k(-B_j^2) by iterating over other distinct values B_p for (int p_idx = 0; p_idx < M; ++p_idx) { if (p_idx == j) continue; // Skip when p is the same as j long long Bp = B[p_idx]; // Another distinct value long long Bp2 = (Bp * Bp); // Square of Bp // Calculate (B_p^2 - B_j^2) mod P safely using long long intermediate long long diff_sq_ll = Bp2 - Bj2; // Ensure the result is positive and within [0, MOD-1] long long diff_sq = (diff_sq_ll % MOD + MOD) % MOD; long long inv_diff_sq = modInverse(diff_sq); // Modular inverse of (B_p^2 - B_j^2) // Update Q_j(-B_j^2) which is the product: product_{p!=j} (B_p^2 - B_j^2)^(-m_p) long long term_val = power(inv_diff_sq, m[p_idx]); // ( (B_p^2 - B_j^2)^{-1} )^{m_p} Qj_val = (Qj_val * term_val) % MOD; // Update S_k(-B_j^2) = sum_{p!=j} -m_p * (B_p^2 - B_j^2)^(-k) for k = 1..mj-1 long long current_inv_power = 1; // This will hold (inv_diff_sq)^k for (int k = 1; k < mj; ++k) { // Iterate k from 1 up to mj-1 (exclusive) // Compute (inv_diff_sq)^k iteratively current_inv_power = (current_inv_power * inv_diff_sq) % MOD; // Calculate the term -m_p * (inv_diff_sq)^k mod P long long term_to_add = (-(long long)m[p_idx] * current_inv_power % MOD + MOD) % MOD; // Add this term to the sum S_k Sk_vals[k] = (Sk_vals[k] + term_to_add) % MOD; } } // Compute H^(k)(-B_j^2) using the formula: H^(k) = (-1)^(k+1) * (k-1)! * S_k H_deriv_vals[0] = 0; // H^(0) is not used in the Bell polynomial recurrence for (int k = 1; k < mj; ++k) { // Compute for k=1..mj-1 // Calculate sign (-1)^(k+1). Note (-1)^(k+1) == (-1)^(k-1) long long sign = (k % 2 == 1) ? 1 : -1; sign = (sign + MOD) % MOD; // Ensure positive representation for modular arithmetic long long k_minus_1_fact = fact[k - 1]; // (k-1)! // Compute H^(k) value using the formula H_deriv_vals[k] = (sign * k_minus_1_fact % MOD * Sk_vals[k] % MOD + MOD) % MOD; } // Compute Bell Polynomial values B_p(H^(1), ..., H^(p)) using the recurrence relation: // BP_{p+1} = Sum_{i=0..p} C(p, i) * BP_{p-i} * H^(i+1) Bell_poly_vals[0] = 1; // Base case BP_0 = 1 for (int p = 0; p < mj - 1; ++p) { // Compute BP_{p+1} using values up to BP_p Bell_poly_vals[p + 1] = 0; // Initialize BP_{p+1} to 0 for (int i = 0; i <= p; ++i) { // Sum over terms based on the recurrence // Calculate term: C(p, i) * BP_{p-i} * H^(i+1) mod P long long term = (nCr_mod(p, i) * Bell_poly_vals[p - i]) % MOD; term = (term * H_deriv_vals[i + 1]) % MOD; // Add the term to BP_{p+1} Bell_poly_vals[p + 1] = (Bell_poly_vals[p + 1] + term) % MOD; } } // Compute partial fraction coefficients C_{j,k} and add their contribution to the total integral for (int k = 1; k <= mj; ++k) { // Iterate over k from 1 to mj (inclusive) // The order of derivative required for C_{j,k} is p = mj - k int p_deriv_order = mj - k; // Compute C_{j, k} = (1 / p!) * Q_j(-B_j^2) * BP_p mod P long long Cjk = (invFact[p_deriv_order] * Qj_val) % MOD; // (p!)^{-1} * Q_j(-B_j^2) Cjk = (Cjk * Bell_poly_vals[p_deriv_order]) % MOD; // * BP_p // Compute V_k(B_j) = C(2k-2, k-1) / (2^(2k-2) * B_j^(2k-1)) mod P long long comb_term = nCr_mod(2 * k - 2, k - 1); // Binomial coefficient C(2k-2, k-1) // Compute the denominator term (2^(2k-2) * B_j^(2k-1))^{-1} mod P long long pow2_term_inv = power(inv2, 2 * k - 2); // (2^{-1})^(2k-2) = 2^-(2k-2) long long powB_term = power(Bj, 2 * k - 1); // B_j^(2k-1) long long inv_powB_term = modInverse(powB_term); // (B_j^(2k-1))^{-1} // Combine parts to get V_k(B_j) = C(2k-2, k-1) * 2^-(2k-2) * (B_j^(2k-1))^{-1} mod P long long VkBj = (comb_term * pow2_term_inv) % MOD; VkBj = (VkBj * inv_powB_term) % MOD; // Add the contribution of this term C_{j,k} * V_k(B_j) to the total integral value long long term_integral = (Cjk * VkBj) % MOD; total_integral_value = (total_integral_value + term_integral) % MOD; } } // Output the final computed integral value modulo P std::cout << total_integral_value << std::endl; return 0; }