結果

問題 No.1263 ご注文は数学ですか?
ユーザー qwewe
提出日時 2025-05-14 13:18:16
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 39 ms / 2,000 ms
コード長 6,161 bytes
コンパイル時間 305 ms
コンパイル使用メモリ 82,448 KB
実行使用メモリ 52,480 KB
最終ジャッジ日時 2025-05-14 13:19:06
合計ジャッジ時間 1,169 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 7
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# Set higher recursion depth if needed, although likely unnecessary for x<=8
# sys.setrecursionlimit(2000) 

def solve():
    # Read input integer x
    x = int(sys.stdin.readline())
    # Define the modulus
    MOD = 1000000007

    # Precompute factorials modulo MOD up to x
    # fact[i] will store i! mod MOD
    fact = [1] * (x + 1)
    for i in range(2, x + 1):
        fact[i] = (fact[i-1] * i) % MOD

    # Modular exponentiation function: computes (base^exp) % mod
    # Uses binary exponentiation (also known as exponentiation by squaring)
    def mod_pow(base, exp, mod):
        res = 1
        base %= mod
        while exp > 0:
            # If exponent is odd, multiply result with base
            if exp % 2 == 1:
                res = (res * base) % mod
            # Square the base and halve the exponent
            base = (base * base) % mod
            exp //= 2
        return res

    # Modular inverse function using Fermat's Little Theorem: computes n^(-1) % mod
    # This requires mod to be prime and n not divisible by mod.
    # The problem constraints ensure MOD is prime and calculations guarantee n is not divisible by MOD.
    def mod_inverse(n, mod):
        # Check if n is congruent to 0 mod MOD. If so, inverse doesn't exist.
        # Based on problem constraints (x>=2) and properties of z_lambda, n should not be 0.
        if n % mod == 0:
             raise ValueError("Modular inverse does not exist for zero")
        # Fermat's Little Theorem states n^(mod-2) is congruent to n^(-1) mod mod for prime mod
        return mod_pow(n, mod - 2, mod)

    # List to store all partitions of x
    partitions = []
    # Temporary list to build a partition during recursion
    current_partition_list = [] 

    # Recursive function to generate partitions of 'target' integer
    # Partitions are generated in non-increasing order of parts.
    # 'max_val' restricts the maximum value of parts that can be added.
    def generate_partitions(target, max_val):
        # Base case: If target becomes 0, we have found a valid partition.
        if target == 0:
            # Add a copy of the current partition state to the list of partitions.
            partitions.append(list(current_partition_list)) 
            return

        # Recursive step: Try adding parts from min(target, max_val) down to 1.
        # This ensures parts are added in non-increasing order.
        for i in range(min(target, max_val), 0, -1):
            # Add part 'i' to the current partition
            current_partition_list.append(i)
            # Recursively call to find partitions for the remaining value 'target - i'
            # The new max_val is 'i' to maintain non-increasing order.
            generate_partitions(target - i, i) 
            # Backtrack: remove the last added part to explore other possibilities.
            current_partition_list.pop() 

    # Start the partition generation process for the input integer x
    generate_partitions(x, x)
    
    # Get the total number of partitions, p(x)
    partition_count = len(partitions)
    
    # Initialize accumulator for the exponent of the overall sign factor (-1)
    total_sign_exponent = 0
    # Initialize accumulator for the product of all z_lambda values, modulo MOD
    # Start with 1 because it's the identity element for multiplication.
    product_z_lambda = 1 

    # Iterate through each generated partition lambda
    for p in partitions:
        # Calculate the length (number of parts) of the partition lambda, denoted as ell(lambda)
        ell = len(p)
        # The sign component for this partition's corresponding f_lambda is (-1)^(x - ell(lambda)).
        # Sum the exponents (x - ell(lambda)) to find the total exponent for the overall sign.
        total_sign_exponent += (x - ell)
        
        # Calculate z_lambda for the current partition p.
        # First, count occurrences of each part size j. Store in dictionary 'counts' where counts[j] = m_j.
        counts = {}
        for part in p:
            counts[part] = counts.get(part, 0) + 1
        
        # Calculate z_lambda = product over j >= 1 of (j^(m_j) * m_j!) mod MOD
        current_z_lambda = 1
        for j, m_j in counts.items():
            # Calculate j^(m_j) mod MOD
            term_pow = mod_pow(j, m_j, MOD)
            # Get m_j! mod MOD from precomputed factorials
            term_fact = fact[m_j]
            # Calculate the term (j^m_j * m_j!) mod MOD
            term = (term_pow * term_fact) % MOD
            # Accumulate the product for z_lambda
            current_z_lambda = (current_z_lambda * term) % MOD
        
        # Accumulate the product of all z_lambda values across all partitions
        product_z_lambda = (product_z_lambda * current_z_lambda) % MOD

    # Determine the overall sign factor based on the parity of total_sign_exponent
    sign = 1
    if total_sign_exponent % 2 != 0:
        # If the exponent is odd, the sign is -1. Represent -1 as MOD-1 in modular arithmetic.
        sign = MOD - 1 

    # Calculate x! mod MOD using the precomputed value
    xf = fact[x]
    
    # Calculate (x! ^ p(x)) mod MOD using modular exponentiation
    xf_pow_p = mod_pow(xf, partition_count, MOD)

    # Calculate the modular inverse of (product of z_lambda) mod MOD
    inv_prod_z = mod_inverse(product_z_lambda, MOD)

    # Calculate the final value: sign * (x!^p(x)) * (product_z_lambda)^(-1) mod MOD
    # Perform calculations step-by-step modulo MOD to prevent overflow
    final_value = (sign * xf_pow_p) % MOD
    final_value = (final_value * inv_prod_z) % MOD

    # Ensure the final result is non-negative. Python's % operator handles negative numbers
    # in a way that might require adjustment for standard modular arithmetic representation (0 to MOD-1).
    # Specifically, if `final_value` is negative, add MOD to bring it into the range [0, MOD-1].
    # This check is robust even if intermediate results became negative somehow, or if language spec differs.
    if final_value < 0:
       final_value += MOD
    
    # Print the final computed value
    print(final_value)

# Execute the main function
solve()
0