結果
| 問題 |
No.36 素数が嫌い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-22 18:59:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 5,403 bytes |
| コンパイル時間 | 2,202 ms |
| コンパイル使用メモリ | 207,988 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-05-22 18:59:43 |
| 合計ジャッジ時間 | 3,455 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct Montgomery{
//2^62未満&奇数modのみ.
//初めにsetmodする.
using u64 = uint64_t;
using u128 = __uint128_t;
private:
static u64 mod,N2,Rsq; //N*N2≡1(mod N);
//Rsq = R^2modN; R=2^64.
u64 v = 0;
public:
long long val(){return reduce(v);}
u64 getmod(){return mod;}
static void setmod(u64 m){
assert(m<(1LL<<62)&&(m&1));
mod = m; N2 = mod;
for(int i=0; i<5; i++) N2 *= 2-N2*mod;
Rsq = (-u128(mod))%mod;
}
//reduce = T*R^-1modNを求める.
u64 reduce(const u128 &T){
//T*R^-1≡(T+(T*(-N2))modR*N)/R 2N未満なので-N必要かだけで良い.
u64 ret = (T+u128(((u64)T)*(-N2))*mod)>>64;
if(ret >= mod) ret -= mod;
return ret;
}
//初期値<mod. 初めにw*R modN...->reduce(R^2)でok.
Montgomery(){v = 0;} Montgomery(long long w):v(reduce(u128(w)*Rsq)){}
Montgomery& operator=(const Montgomery &b) = default;
Montgomery operator-()const{return Montgomery()-Montgomery(*this);}
Montgomery operator+(const Montgomery &b)const{return Montgomery(*this)+=b;}
Montgomery operator-(const Montgomery &b)const{return Montgomery(*this)-=b;}
Montgomery operator*(const Montgomery &b)const{return Montgomery(*this)*=b;}
Montgomery operator/(const Montgomery &b)const{return Montgomery(*this)/=b;}
Montgomery& operator+=(const Montgomery &b){
v += b.v;
if(v >= mod) v -= mod;
return (*this);
}
Montgomery& operator-=(const Montgomery &b){
v += mod-b.v;
if(v >= mod) v -= mod;
return (*this);
}
Montgomery& operator*=(const Montgomery &b){
v = reduce(u128(v)*b.v);
return (*this);
}
Montgomery& operator/=(const Montgomery &b){
(*this) *= b.inv();
return (*this);
}
Montgomery pow(u64 b)const{
Montgomery ret = 1,p = (*this);
while(b){
if(b&1) ret *= p;
p *= p; b >>= 1;
}
return ret;
}
Montgomery inv()const{return pow(mod-2);}
bool operator!=(const Montgomery &b)const{return v!=b.v;}
bool operator==(const Montgomery &b)const{return v==b.v;}
};
typename Montgomery::u64 Montgomery::mod,Montgomery::N2,Montgomery::Rsq;
using mont = Montgomery;
bool MillerRabin(long long N,const vector<long long> &A){
mont::setmod(N);
long long s = __builtin_ctzll(N-1),d = N-1;
d >>= s;
for(auto &a : A){
if(N <= a) break;
mont x = mont(a).pow(d);
if(x != 1){
long long t;
for(t=0; t<s; t++){
if(x == N-1) break;
x *= x;
}
if(t == s) return false;
}
}
return true;
}
bool isprime(const long long N){
if(N <= 1) return false;
else if(N == 2) return true;
else if(N%2 == 0) return false;
else if(N < 4759123141LL) return MillerRabin(N,{2,7,61});
else return MillerRabin(N, {2,325,9375,28178,450775,9780504,1795265022});
}
long long stein_gcd(long long a,long long b){
if((!a)||(!b)) return a+b;
int n = __builtin_ctzll(a);
int m = __builtin_ctzll(b);
auto f = [](auto f,long long a,long long b) -> long long {
if(a == b) return a;
long long s = a>b?a-b:b-a;
int n = __builtin_ctzll(s);
return f(f,s>>n,a>b?b:a);
};
return f(f,a>>n,b>>m)<<(n>m?m:n);
}
template<typename T>
vector<T> PollardsRho(T N,bool first = true){
if(N <= 1) return {};
vector<T> ret;
while(N%2 == 0) N >>= 1,ret.push_back(2);
if(N == 1) return ret;
if(isprime(N)){
ret.push_back(N);
return ret;
}
if(N <= 1024){
for(int i=3; i*i<=N; i++) while(N%i == 0) N /= i,ret.push_back(i);
if(N != 1) ret.push_back(N);
return ret;
}
mont::setmod(N);
mont one = 1;
for(int i=1; i<N; i++){
mont x1 = 0,y1 = 0,z1 = one;
mont x2 = 0,y2 = 0,z2 = one;
mont add1 = i*2-1,add2 = i*2;
T g = 1;
for(int r=512; ; r<<=1){
mont Y1 = y1,Y2 = y2;
for(int t=0; t<r; t++){
y1 *= y1; y1 += add1;
y2 *= y2; y2 += add2;
z1 *= (x1-y1);
z2 *= (x2-y2);
}
g = stein_gcd((z1*z2).val(),N);
if(g == 1){x1 = y1; x2 = y2; continue;}
if(g != N) break;
T g1 = stein_gcd(z1.val(),N);
if(g1 != 1 && g1 != N){g = g1; break;}
T g2 = stein_gcd(z2.val(),N);
if(g2 != 1 && g2 != N){g = g2; break;}
g = 1;
mont X = (g1==1)?x2:x1;
mont Y = (g1==1)?y2:y1;
mont a = (g1==1)?add2:add1;
while(g == 1){
Y *= Y; Y += a;
g = stein_gcd((X-Y).val(),N);
}
break;
}
if(g == N) continue;
vector<T> P = PollardsRho(g,false),Q = PollardsRho(N/g,false);
for(auto &p : P) ret.push_back(p);
for(auto &q : Q) ret.push_back(q);
break;
}
if(first) sort(ret.begin(),ret.end());
return ret;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
long long N; cin >> N;
auto P = PollardsRho(N);
if(P.size() >= 3) cout << "YES\n";
else cout << "NO\n";
}