結果
| 問題 |
No.3038 シャッフルの再現
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 14:27:20 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,375 bytes |
| コンパイル時間 | 475 ms |
| コンパイル使用メモリ | 82,416 KB |
| 実行使用メモリ | 68,232 KB |
| 最終ジャッジ日時 | 2025-06-12 14:27:59 |
| 合計ジャッジ時間 | 2,677 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
MOD = 10**9 + 7
def factor(n):
factors = {}
while n % 2 == 0:
factors[2] = factors.get(2, 0) + 1
n = n // 2
i = 3
while i * i <= n:
while n % i == 0:
factors[i] = factors.get(i, 0) + 1
n = n // i
i += 2
if n > 1:
factors[n] = 1
return factors
def generate_divisors(factors_dict):
divisors = [1]
for p in sorted(factors_dict.keys()):
exp = factors_dict[p]
current_powers = [p**e for e in range(exp + 1)]
new_divisors = []
for d in divisors:
for power in current_powers:
new_divisors.append(d * power)
divisors = list(sorted(set(new_divisors)))
return sorted(divisors)
def fib_pair(n, mod):
if n == 0:
return (0, 1)
a, b = fib_pair(n // 2, mod)
c = (a * (2 * b - a)) % mod
d = (a * a + b * b) % mod
if n % 2 == 0:
return (c, d)
else:
return (d, (c + d) % mod)
def compute_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
mod5 = p % 5
if mod5 in (1, 4):
candidate = p - 1
else:
candidate = 2 * (p + 1)
factors = factor(candidate)
divisors = generate_divisors(factors)
for d in sorted(divisors):
if d == 0:
continue
fn, fn1 = fib_pair(d, p)
if fn == 0 and fn1 == 1:
return d
return candidate
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
factors = []
for _ in range(N):
p = int(input[ptr])
k = int(input[ptr + 1])
ptr += 2
factors.append((p, k))
periods = []
for p, k in factors:
if p == 2:
if k == 1:
pi_pk = 3
elif k == 2:
pi_pk = 6
else:
pi_pk = 3 * (2 ** (k - 1))
elif p == 5:
if k == 1:
pi_pk = 20
else:
pi_pk = 20 * (5 ** (k - 1))
else:
pi_p = compute_pisano_period(p)
pi_pk = pi_p * (p ** (k - 1))
periods.append(pi_pk)
current_lcm = 1
for p in periods:
current_lcm = current_lcm * p // math.gcd(current_lcm, p)
print(current_lcm % MOD)
if __name__ == "__main__":
main()
gew1fw