結果
| 問題 |
No.3038 シャッフルの再現
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 14:28:23 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,899 bytes |
| コンパイル時間 | 276 ms |
| コンパイル使用メモリ | 82,360 KB |
| 実行使用メモリ | 70,496 KB |
| 最終ジャッジ日時 | 2025-06-12 14:28:34 |
| 合計ジャッジ時間 | 2,531 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
import random
from heapq import heappush, heappop
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = {}
def _factor(n):
if n == 1:
return
if is_prime(n):
factors[n] = factors.get(n, 0) + 1
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def generate_divisors_sorted(factors_dict):
primes = sorted(factors_dict.keys())
divisors = [1]
for p in primes:
exp = factors_dict[p]
temp = []
for d in divisors:
current = 1
for _ in range(exp + 1):
temp.append(d * current)
current *= p
divisors = sorted(temp)
return divisors
def matrix_mult(a, b, mod):
return [
(a[0]*b[0] + a[1]*b[2]) % mod,
(a[0]*b[1] + a[1]*b[3]) % mod,
(a[2]*b[0] + a[3]*b[2]) % mod,
(a[2]*b[1] + a[3]*b[3]) % mod,
]
def matrix_pow(matrix, power, mod):
result = [1, 0, 0, 1]
while power > 0:
if power % 2 == 1:
result = matrix_mult(result, matrix, mod)
matrix = matrix_mult(matrix, matrix, mod)
power //= 2
return result
def fib_mod(n, mod_value):
if n == 0:
return (0, 1)
matrix = [1, 1, 1, 0]
powered = matrix_pow(matrix, n, mod_value)
return (powered[1], powered[0])
def get_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
if p % 5 in (1, 4):
m = p - 1
else:
m = 2 * (p + 1)
m_factors = factor(m)
divisors = generate_divisors_sorted(m_factors)
for d in divisors:
if d == 0:
continue
fn, fn1 = fib_mod(d, p)
if fn == 0 and fn1 % p == 1:
return d
return m
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
primes = []
for _ in range(N):
p = int(input[idx])
k = int(input[idx+1])
idx += 2
primes.append((p, k))
global_factors = {}
for p, k in primes:
if p == 2:
if k == 1:
factors = {3: 1}
else:
factors = {2: k-1, 3: 1}
elif p == 5:
factors = {2: 2, 5: k}
else:
d = get_pisano_period(p)
d_factors = factor(d)
if p in d_factors:
d_factors[p] += k - 1
else:
d_factors[p] = k - 1
factors = d_factors
for q, exp in factors.items():
if q in global_factors:
if exp > global_factors[q]:
global_factors[q] = exp
else:
global_factors[q] = exp
result = 1
for q, exp in global_factors.items():
result = (result * pow(q, exp, MOD)) % MOD
print(result)
if __name__ == "__main__":
main()
gew1fw