結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:28:23 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,899 bytes |
コンパイル時間 | 276 ms |
コンパイル使用メモリ | 82,360 KB |
実行使用メモリ | 70,496 KB |
最終ジャッジ日時 | 2025-06-12 14:28:34 |
合計ジャッジ時間 | 2,531 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import math import random from heapq import heappush, heappop MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def generate_divisors_sorted(factors_dict): primes = sorted(factors_dict.keys()) divisors = [1] for p in primes: exp = factors_dict[p] temp = [] for d in divisors: current = 1 for _ in range(exp + 1): temp.append(d * current) current *= p divisors = sorted(temp) return divisors def matrix_mult(a, b, mod): return [ (a[0]*b[0] + a[1]*b[2]) % mod, (a[0]*b[1] + a[1]*b[3]) % mod, (a[2]*b[0] + a[3]*b[2]) % mod, (a[2]*b[1] + a[3]*b[3]) % mod, ] def matrix_pow(matrix, power, mod): result = [1, 0, 0, 1] while power > 0: if power % 2 == 1: result = matrix_mult(result, matrix, mod) matrix = matrix_mult(matrix, matrix, mod) power //= 2 return result def fib_mod(n, mod_value): if n == 0: return (0, 1) matrix = [1, 1, 1, 0] powered = matrix_pow(matrix, n, mod_value) return (powered[1], powered[0]) def get_pisano_period(p): if p == 2: return 3 if p == 5: return 20 if p % 5 in (1, 4): m = p - 1 else: m = 2 * (p + 1) m_factors = factor(m) divisors = generate_divisors_sorted(m_factors) for d in divisors: if d == 0: continue fn, fn1 = fib_mod(d, p) if fn == 0 and fn1 % p == 1: return d return m def main(): input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 primes = [] for _ in range(N): p = int(input[idx]) k = int(input[idx+1]) idx += 2 primes.append((p, k)) global_factors = {} for p, k in primes: if p == 2: if k == 1: factors = {3: 1} else: factors = {2: k-1, 3: 1} elif p == 5: factors = {2: 2, 5: k} else: d = get_pisano_period(p) d_factors = factor(d) if p in d_factors: d_factors[p] += k - 1 else: d_factors[p] = k - 1 factors = d_factors for q, exp in factors.items(): if q in global_factors: if exp > global_factors[q]: global_factors[q] = exp else: global_factors[q] = exp result = 1 for q, exp in global_factors.items(): result = (result * pow(q, exp, MOD)) % MOD print(result) if __name__ == "__main__": main()