結果

問題 No.3038 シャッフルの再現
ユーザー gew1fw
提出日時 2025-06-12 14:28:34
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 2,500 bytes
コンパイル時間 317 ms
コンパイル使用メモリ 82,364 KB
実行使用メモリ 67,776 KB
最終ジャッジ日時 2025-06-12 14:28:43
合計ジャッジ時間 2,327 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 1
other RE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from math import gcd
from collections import defaultdict

MOD = 10**9 + 7

def factor(n):
    factors = defaultdict(int)
    while n % 2 == 0:
        factors[2] += 1
        n = n // 2
    i = 3
    while i * i <= n:
        while n % i == 0:
            factors[i] += 1
            n = n // i
        i += 2
    if n > 1:
        factors[n] += 1
    return factors

def generate_divisors(factors):
    divisors = [1]
    for p in factors:
        exponents = [p**e for e in range(1, factors[p] + 1)]
        new_divisors = []
        for d in divisors:
            for exp in exponents:
                new_divisors.append(d * exp)
        divisors += new_divisors
    return sorted(divisors)

def fib_pair(n, mod):
    if n == 0:
        return (0, 1)
    a, b = fib_pair(n >> 1, mod)
    c = a * (2 * b - a) % mod
    d = (a * a + b * b) % mod
    if n & 1:
        return (d, (c + d) % mod)
    else:
        return (c, d)

def compute_pisano_period(p):
    if p == 2:
        return 3
    if p == 5:
        return 20
    mod5 = p % 5
    if mod5 in (1, 4):
        m = p - 1
    else:
        m = 2 * (p + 1)
    factors = factor(m)
    divisors = generate_divisors(factors)
    for d in divisors:
        Fd, Fd_plus_1 = fib_pair(d, p)
        if Fd % p == 0 and Fd_plus_1 % p == 1:
            return d
    return m  # fallback

def compute_period_factors(p, k):
    if p == 2:
        if k == 1:
            return {3: 1}
        elif k == 2:
            return {2: 1, 3: 1}
        else:
            return {2: k - 1, 3: 1}
    if p == 5:
        factors = {2: 2, 5: 1}
        factors[5] += (k - 1)
        return factors
    d = compute_pisano_period(p)
    Fd_mod, _ = fib_pair(d, p * p)
    if Fd_mod % (p * p) == 0:
        e = k
    else:
        e = k - 1
    d_factors = factor(d)
    d_factors[p] = d_factors.get(p, 0) + e
    return d_factors

def main():
    n = int(sys.stdin.readline())
    input_factors = []
    for _ in range(n):
        p, k = map(int, sys.stdin.readline().split())
        input_factors.append((p, k))
    
    global_factors = defaultdict(int)
    for p, k in input_factors:
        period_factors = compute_period_factors(p, k)
        for q in period_factors:
            e = period_factors[q]
            if e > global_factors[q]:
                global_factors[q] = e
    
    result = 1
    for q in global_factors:
        result = (result * pow(q, global_factors[q], MOD)) % MOD
    print(result)

if __name__ == "__main__":
    main()
0