結果
| 問題 |
No.640 76本のトロンボーン
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 14:43:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,346 bytes |
| コンパイル時間 | 427 ms |
| コンパイル使用メモリ | 82,400 KB |
| 実行使用メモリ | 77,216 KB |
| 最終ジャッジ日時 | 2025-06-12 14:44:25 |
| 合計ジャッジ時間 | 1,731 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 8 WA * 7 |
ソースコード
import sys
from collections import deque
def main():
sys.setrecursionlimit(1 << 25)
n = int(sys.stdin.readline())
grid = [sys.stdin.readline().strip() for _ in range(n)]
# Generate all possible horizontal trombones
H = []
for i in range(n):
max_j = n - (n-1) # because j can be from 0 to max_j-1 inclusive
for j in range(max_j):
valid = True
for k in range(n-1):
if j + k >= n:
valid = False
break
if grid[i][j + k] != '.':
valid = False
break
if valid:
H.append((i, j))
# Generate all possible vertical trombones
V = []
for j in range(n):
max_i = n - (n-1)
for i in range(max_i):
valid = True
for k in range(n-1):
if i + k >= n:
valid = False
break
if grid[i + k][j] != '.':
valid = False
break
if valid:
V.append((i, j))
# Precompute the areas for each trombone
h_areas = []
for (i, j) in H:
area = set()
for k in range(n-1):
area.add((i, j + k))
h_areas.append(area)
v_areas = []
for (i, j) in V:
area = set()
for k in range(n-1):
area.add((i + k, j))
v_areas.append(area)
# Build the bipartite graph
graph = [[] for _ in range(len(H))]
for h_idx in range(len(H)):
h_area = h_areas[h_idx]
for v_idx in range(len(V)):
v_area = v_areas[v_idx]
if len(h_area.intersection(v_area)) > 0:
graph[h_idx].append(v_idx)
# Hopcroft-Karp algorithm implementation
def hopcroft_karp():
pair_U = [-1] * len(H)
pair_V = [-1] * len(V)
dist = [0] * len(H)
def bfs():
queue = deque()
for u in range(len(H)):
if pair_U[u] == -1:
dist[u] = 0
queue.append(u)
else:
dist[u] = float('inf')
dist_null = float('inf')
while queue:
u = queue.popleft()
if dist[u] < dist_null:
for v in graph[u]:
if pair_V[v] == -1:
dist_null = dist[u] + 1
elif dist[pair_V[v]] == float('inf'):
dist[pair_V[v]] = dist[u] + 1
queue.append(pair_V[v])
return dist_null != float('inf')
def dfs(u):
for v in graph[u]:
if pair_V[v] == -1 or (dist[pair_V[v]] == dist[u] + 1 and dfs(pair_V[v])):
pair_U[u] = v
pair_V[v] = u
return True
dist[u] = float('inf')
return False
result = 0
while bfs():
for u in range(len(H)):
if pair_U[u] == -1:
if dfs(u):
result += 1
return result
max_matching = hopcroft_karp()
max_independent_set = len(H) + len(V) - max_matching
print(max_independent_set)
if __name__ == "__main__":
main()
gew1fw