結果
| 問題 | 
                            No.1928 Make a Binary Tree
                             | 
                    
| コンテスト | |
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 15:05:27 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,551 bytes | 
| コンパイル時間 | 183 ms | 
| コンパイル使用メモリ | 82,664 KB | 
| 実行使用メモリ | 109,824 KB | 
| 最終ジャッジ日時 | 2025-06-12 15:06:20 | 
| 合計ジャッジ時間 | 12,549 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 23 WA * 34 | 
ソースコード
import sys
from collections import deque
def main():
    sys.setrecursionlimit(1 << 25)
    N = int(sys.stdin.readline())
    edges = [[] for _ in range(N + 1)]
    for _ in range(N - 1):
        x, y = map(int, sys.stdin.readline().split())
        edges[x].append(y)
        edges[y].append(x)
    
    # Compute depth of each node using BFS
    depth = [0] * (N + 1)
    visited = [False] * (N + 1)
    q = deque()
    q.append(1)
    visited[1] = True
    depth[1] = 0
    max_depth = 0
    while q:
        u = q.popleft()
        for v in edges[u]:
            if not visited[v]:
                visited[v] = True
                depth[v] = depth[u] + 1
                max_depth = max(max_depth, depth[v])
                q.append(v)
    
    # Count the number of nodes at each depth
    depth_count = [0] * (max_depth + 1)
    for d in depth[1:]:  # depth[0] is for node 1, which is root
        depth_count[d] += 1
    
    # Compute count_ge[d] = number of nodes with depth >= d
    count_ge = [0] * (max_depth + 1)
    count_ge[max_depth] = depth_count[max_depth]
    for d in range(max_depth - 1, -1, -1):
        count_ge[d] = depth_count[d] + count_ge[d + 1]
    
    # Compute assign_count
    assign_count = [0] * (max_depth + 1)
    sum_assigned = 0
    for d in range(max_depth, -1, -1):
        available = count_ge[d] - sum_assigned
        cap = 1 << d  # 2^d
        assign = min(cap, available)
        assign_count[d] = assign
        sum_assigned += assign
    
    print(sum_assigned)
if __name__ == "__main__":
    main()
            
            
            
        
            
gew1fw