結果
| 問題 |
No.1243 約数加算
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 15:22:00 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 827 ms / 2,000 ms |
| コード長 | 2,788 bytes |
| コンパイル時間 | 306 ms |
| コンパイル使用メモリ | 82,768 KB |
| 実行使用メモリ | 79,156 KB |
| 最終ジャッジ日時 | 2025-06-12 15:22:05 |
| 合計ジャッジ時間 | 4,242 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 9 |
ソースコード
import sys
import math
import random
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def generate_divisors(n):
if n == 0:
return []
factors = factor(n)
factor_counts = {}
for p in factors:
if p in factor_counts:
factor_counts[p] += 1
else:
factor_counts[p] = 1
divisors = [1]
for p, cnt in factor_counts.items():
temp = []
for d in divisors:
current = d
for e in range(1, cnt + 1):
current *= p
temp.append(current)
divisors += temp
divisors = list(set(divisors))
divisors.sort(reverse=True)
return divisors
def main():
input = sys.stdin.read().split()
idx = 0
T = int(input[idx])
idx += 1
for _ in range(T):
A = int(input[idx])
B = int(input[idx+1])
idx += 2
if A == B:
print(0)
print()
continue
current = B
steps = []
while current != A:
max_possible = current - A
divisors = generate_divisors(current)
found = False
for d in divisors:
if d <= max_possible:
steps.append(d)
current -= d
found = True
break
if not found:
print("No solution found")
return
steps = steps[::-1]
K = len(steps)
print(K)
print(' '.join(map(str, steps)))
if __name__ == '__main__':
main()
gew1fw