結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-06-12 15:29:58 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,316 bytes |
コンパイル時間 | 173 ms |
コンパイル使用メモリ | 82,964 KB |
実行使用メモリ | 70,600 KB |
最終ジャッジ日時 | 2025-06-12 15:30:03 |
合計ジャッジ時間 | 2,609 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import math import random MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n - 1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def factorize(n): if n == 0: return {} factors = factor(n) res = {} for p in factors: res[p] = res.get(p, 0) + 1 return res def generate_divisors(factors): divisors = [1] for prime, exp in factors.items(): temp = [] for e in range(exp + 1): prime_power = prime ** e for d in divisors: temp.append(d * prime_power) divisors = temp return divisors def fib_mod(n, mod): if mod == 1: return 0 if n == 0: return 0 a, b = 0, 1 for _ in range(n): a, b = b, (a + b) % mod return a def compute_pisano_period(p): if p == 2: return 3 if p == 5: return 20 mod = p remainder = p % 5 if remainder == 1 or remainder == 4: d = p - 1 else: d = 2 * (p + 1) if d == 0: return 0 factors = factorize(d) divisors = generate_divisors(factors) divisors = list(set(divisors)) divisors.sort() for m in divisors: if m == 0: continue fm = fib_mod(m, mod) fm1 = fib_mod(m + 1, mod) if fm == 0 and fm1 == 1: return m return d def lcm(a, b): return a * b // math.gcd(a, b) def main(): import sys input = sys.stdin.read data = input().split() idx = 0 n = int(data[idx]) idx += 1 primes = [] for _ in range(n): p = int(data[idx]) k = int(data[idx + 1]) primes.append((p, k)) idx += 2 pisano_periods = [] for p, k in primes: if p == 2: pi_p = 3 elif p == 5: pi_p = 20 else: pi_p = compute_pisano_period(p) if k == 1: pi_pk = pi_p else: pi_pk = pi_p * (p ** (k - 1)) pisano_periods.append(pi_pk) current_lcm = 1 for period in pisano_periods: current_lcm = lcm(current_lcm, period) print(current_lcm % MOD) if __name__ == "__main__": main()