結果

問題 No.3038 シャッフルの再現
ユーザー gew1fw
提出日時 2025-06-12 15:41:49
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 2,768 bytes
コンパイル時間 198 ms
コンパイル使用メモリ 82,360 KB
実行使用メモリ 67,988 KB
最終ジャッジ日時 2025-06-12 15:41:57
合計ジャッジ時間 2,022 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 1
other RE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
import math

MOD = 10**9 + 7

def factor(n):
    factors = {}
    while n % 2 == 0:
        factors[2] = factors.get(2, 0) + 1
        n = n // 2
    i = 3
    while i * i <= n:
        while n % i == 0:
            factors[i] = factors.get(i, 0) + 1
            n = n // i
        i += 2
    if n > 1:
        factors[n] = 1
    return factors

def generate_divisors(factors):
    divisors = [1]
    for p, exp in factors.items():
        current_divisors = []
        for d in divisors:
            current = 1
            for _ in range(exp + 1):
                current_divisors.append(d * current)
                current *= p
        divisors = current_divisors
    divisors = list(set(divisors))
    divisors.sort()
    return divisors

def fast_doubling(n, mod):
    if n == 0:
        return (0, 1)
    a, b = 0, 1
    mask = 1 << (n.bit_length() - 1)
    while mask > 0:
        c = a * ((2 * b - a) % mod) % mod
        d = (a * a + b * b) % mod
        if (n & mask):
            a, b = d, (c + d) % mod
        else:
            a, b = c, d
        mask >>= 1
    return (a, b)

def compute_pisano_prime(p):
    if p == 2:
        return 3
    if p == 5:
        return 20
    legendre = pow(5, (p - 1) // 2, p)
    if legendre == 1:
        m = p - 1
    else:
        m = 2 * (p + 1)
    factors_m = factor(m)
    divisors = generate_divisors(factors_m)
    for d in divisors:
        a, b = fast_doubling(d, p)
        if a % p == 0 and b % p == 1:
            return d
    return m

def main():
    input = sys.stdin.read().split()
    ptr = 0
    N = int(input[ptr])
    ptr += 1
    max_factors = {}
    for _ in range(N):
        p = int(input[ptr])
        ptr += 1
        k = int(input[ptr])
        ptr += 1
        if p == 2:
            pi_p = 3
        elif p == 5:
            pi_p = 20
        else:
            pi_p = compute_pisano_prime(p)
        if k > 1:
            period_pk = pi_p * (p ** (k - 1))
        else:
            period_pk = pi_p
        factors_pi_p = factor(pi_p)
        factors_p = {}
        if k > 1:
            factors_p[p] = k - 1
        merged_factors = {}
        for prime, exp in factors_pi_p.items():
            merged_factors[prime] = merged_factors.get(prime, 0) + exp
        for prime, exp in factors_p.items():
            merged_factors[prime] = merged_factors.get(prime, 0) + exp
        for prime, exp in merged_factors.items():
            if prime in max_factors:
                if exp > max_factors[prime]:
                    max_factors[prime] = exp
            else:
                max_factors[prime] = exp
    result = 1
    for prime, exp in max_factors.items():
        result = (result * pow(prime, exp, MOD)) % MOD
    print(result)

if __name__ == '__main__':
    main()
0