結果
| 問題 |
No.3038 シャッフルの再現
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 15:42:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,258 bytes |
| コンパイル時間 | 309 ms |
| コンパイル使用メモリ | 82,660 KB |
| 実行使用メモリ | 67,908 KB |
| 最終ジャッジ日時 | 2025-06-12 15:42:24 |
| 合計ジャッジ時間 | 2,408 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
from collections import defaultdict
MOD = 10**9 + 7
def factorize(x):
factors = defaultdict(int)
if x == 0:
return factors
while x % 2 == 0:
factors[2] += 1
x = x // 2
i = 3
while i * i <= x:
while x % i == 0:
factors[i] += 1
x = x // i
i += 2
if x > 1:
factors[x] += 1
return factors
def get_divisors_sorted(x):
if x == 0:
return []
factors = factorize(x)
divisors = [1]
for prime, exp in factors.items():
current_divisors = []
prime_powers = [prime**e for e in range(1, exp + 1)]
for d in divisors:
for p_pow in prime_powers:
current_divisors.append(d * p_pow)
divisors += current_divisors
divisors = list(set(divisors))
divisors.sort()
return divisors
def fast_doubling(n, mod):
if n == 0:
return (0, 1)
a, b = fast_doubling(n >> 1, mod)
c = (a * (2 * b - a)) % mod
d = (a * a + b * b) % mod
if n & 1:
return (d, (c + d) % mod)
else:
return (c, d)
def compute_pisano_prime(p):
if p == 2:
return 3
if p == 5:
return 20
mod5 = p % 5
if mod5 in (1, 4):
x = p - 1
else:
x = 2 * (p + 1)
divisors = get_divisors_sorted(x)
for d in divisors:
a, b = fast_doubling(d, p)
if a == 0 and b == 1:
return d
return x
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
max_factors = defaultdict(int)
for _ in range(N):
p = int(input[idx])
k = int(input[idx + 1])
idx += 2
if p == 2:
factors = {2: k - 1, 3: 1}
elif p == 5:
factors = {2: 2, 5: k}
else:
d = compute_pisano_prime(p)
factors_d = factorize(d)
factors_d[p] += (k - 1)
factors = factors_d
for prime, exp in factors.items():
if exp > max_factors[prime]:
max_factors[prime] = exp
result = 1
for prime, exp in max_factors.items():
result = (result * pow(prime, exp, MOD)) % MOD
print(result)
if __name__ == '__main__':
main()
gew1fw