結果
| 問題 |
No.3038 シャッフルの再現
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 15:50:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,767 bytes |
| コンパイル時間 | 187 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 68,864 KB |
| 最終ジャッジ日時 | 2025-06-12 15:50:22 |
| 合計ジャッジ時間 | 2,585 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import random
from math import gcd
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2,3,5,7,11,13,17,19,23,29,31,37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2,3,5,7,11,13,17,19,23,29,31,37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n -1:
continue
for _ in range(s-1):
x = pow(x, 2, n)
if x == n -1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def get_prime_factors(n):
if n == 1:
return []
factors = factor(n)
result = []
prev = factors[0]
count = 1
for p in factors[1:]:
if p == prev:
count +=1
else:
result.append( (prev, count) )
prev = p
count =1
result.append( (prev, count) )
return result
def generate_divisors(factors):
divisors = [1]
for (p, exp) in factors:
temp = []
for d in divisors:
current = d
for e in range(1, exp+1):
current *= p
temp.append(current)
divisors += temp
divisors = list(set(divisors))
divisors.sort()
return divisors
def legendre_symbol(a, p):
ls = pow(a, (p-1)//2, p)
if ls == p-1:
return -1
return ls
def fast_doubling(n, p):
def fib_pair(n):
if n == 0:
return (0, 1)
a, b = fib_pair(n >> 1)
c = (a * (2 * b - a)) % p
d = (a * a + b * b) % p
if n & 1:
return (d, (c + d) % p)
else:
return (c, d)
return fib_pair(n)
def compute_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
res = legendre_symbol(5, p)
if res == 1:
D = p - 1
else:
D = 2 * (p + 1)
if D == 0:
return 1
factors = get_prime_factors(D)
divisors = generate_divisors(factors)
for n in divisors:
a, b = fast_doubling(n, p)
if a == 0 and b == 1:
return n
return D
def compute_lcm(a, b):
return a * b // gcd(a, b)
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx +=1
primes = []
for _ in range(N):
p = int(input[idx])
k = int(input[idx+1])
idx +=2
primes.append( (p, k) )
pisano_periods = []
for p, k in primes:
if p == 2:
if k == 1:
pi = 3
else:
pi = 3 * (2 ** (k-1))
elif p == 5:
if k == 1:
pi = 20
else:
pi = 20 * (5 ** (k-1))
else:
pi_p = compute_pisano_period(p)
pi = pi_p * (p ** (k-1))
pisano_periods.append(pi)
current_lcm = 1
for pi in pisano_periods:
current_lcm = compute_lcm(current_lcm, pi)
current_lcm %= MOD
print(current_lcm % MOD)
if __name__ == "__main__":
main()
gew1fw