結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-06-12 16:22:38 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,062 bytes |
コンパイル時間 | 243 ms |
コンパイル使用メモリ | 82,296 KB |
実行使用メモリ | 98,808 KB |
最終ジャッジ日時 | 2025-06-12 16:23:09 |
合計ジャッジ時間 | 23,430 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import math import random def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def find_min_new_prime(primes_set): candidate = 2 while True: if candidate not in primes_set and is_prime(candidate): return candidate candidate += 1 import sys input = sys.stdin.read data = input().split() T = int(data[0]) cases = list(map(int, data[1:T+1])) for X in cases: if X == 1: print(2) continue factors = factor(X) primes = list(factors.keys()) primes_set = set(primes) # Option A p_new = find_min_new_prime(primes_set) Y_a = X * p_new # Option B min_Yb = float('inf') for p in primes: a = factors[p] k = p ** (a + 1) Y_i = X * k if Y_i < min_Yb: min_Yb = Y_i answer = min(Y_a, min_Yb) print(answer)