結果
| 問題 | No.1611 Minimum Multiple with Double Divisors | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 16:22:51 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,638 bytes | 
| コンパイル時間 | 209 ms | 
| コンパイル使用メモリ | 82,688 KB | 
| 実行使用メモリ | 100,452 KB | 
| 最終ジャッジ日時 | 2025-06-12 16:23:40 | 
| 合計ジャッジ時間 | 22,859 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 9 WA * 20 TLE * 8 | 
ソースコード
import sys
import math
import random
def is_prime(n):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True
def pollards_rho(n):
    if n % 2 == 0:
        return 2
    if n % 3 == 0:
        return 3
    if n % 5 == 0:
        return 5
    while True:
        c = random.randint(1, n-1)
        f = lambda x: (pow(x, 2, n) + c) % n
        x, y, d = 2, 2, 1
        while d == 1:
            x = f(x)
            y = f(f(y))
            d = math.gcd(abs(x - y), n)
        if d != n:
            return d
def factor(n):
    factors = []
    def _factor(n):
        if n == 1:
            return
        if is_prime(n):
            factors.append(n)
            return
        d = pollards_rho(n)
        _factor(d)
        _factor(n // d)
    _factor(n)
    factors.sort()
    return factors
def get_prime_factors(n):
    if n == 1:
        return {}
    factors = factor(n)
    res = {}
    for p in factors:
        res[p] = res.get(p, 0) + 1
    return res
def find_s(X):
    if X == 1:
        return 2
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]:
        if X % p != 0:
            return p
    if X % 2 != 0:
        return 2
    if X % 3 != 0:
        return 3
    return 211
def main():
    input = sys.stdin.read().split()
    T = int(input[0])
    for i in range(1, T+1):
        X = int(input[i])
        if X == 1:
            print(2)
            continue
        factors = get_prime_factors(X)
        primes = list(factors.keys())
        exponents = list(factors.values())
        d = 1
        for e in exponents:
            d *= (e + 1)
        candidates = []
        for p in primes:
            e_p = factors[p]
            k = e_p + 1
            multiplier = p ** k
            y_candidate = X * multiplier
            candidates.append(y_candidate)
        s = find_s(X)
        y_candidate = X * s
        candidates.append(y_candidate)
        Y = min(candidates)
        print(Y)
if __name__ == "__main__":
    main()
            
            
            
        